
Documentation

opsi
Version 3.3

open pc server integration

Manual

Status: 1/22/09

uib gmbh
Bonifaziusplatz 1B

D - 55118 Mainz, Germany

phone: +49 - (0)6131-275610

www.uib.de
info@uib.de

1

http://www.uib.de/
mailto:info@uib.de?subject=Regarding the opsi documentation ...

Table of Contents

1. INTRODUCTION..11
1.1. Who should read this manual? ..11

1.2. Notations...11

2. OVERVIEW OF OPSI..12
2.1. Experience..12

2.2. opsi features..12

2.3. What's new at opsi 3.3...13

2.4. What you should read in case of a upgrade to opsi 3.3..16

3. OPSI CONFIGURATION AND TOOLS...18
3.1. Overview...18

3.2. Tool: opsi V3 opsi-Configed..18
3.2.1. Requirements and operation...18

3.2.2. Login..19

3.2.3. Depot selection...19

3.2.4. Single client selection and batch selection...20

3.2.5. Client processing / WakeOnLan / Create a Client / Move a Client...21

3.2.6. Product configuration...23

3.2.7. Netboot products..25

3.2.8. Hardware information..26

3.2.9. Software inventory...27

3.2.10. Server configuration: network and additional settings...27

3.3. Tool: opsi V3 opsi-Webconfiged...28

3.4. Tool: opsi-package-manager: (de-)installs opsi-packages..28

3.5. Tool: opsi V3 opsi-admin..30
3.5.1. Overview..30

3.5.2. Typical use cases..31

3.5.2.1. Delete product..31

2

3.5.2.2. Set a product to setup for all clients which have this product installed...31

3.5.2.3. Client delete...31

3.5.2.4. Client create...31

3.5.2.5. Client boot image activate..32

3.5.2.6. Attach client description...32

3.5.2.7. Set pcpatch password...32

3.5.3. List of methods...32

4. LOCALBOOT PRODUCTS: AUTOMATIC SOFTWARE DISTRIBUTION WITH OPSI.

40
4.1. opsi-preloginloader..40

4.1.1. Overview..40

4.1.2. Integration of the software installation with the opsi preLoginLoader..41

4.1.3. Subsequent installation of the opsi-preloginloaders...42

4.1.3.1. Usage of the opsi-deploy-preloginloader...43

4.1.3.2. Usage of service_setup.cmd...43

4.1.4. Blocking the user login with the opsi-Loginblocker..44

4.2. opsi standard products..44
4.2.1. opsi-preloginloader..44

4.2.2. opsi-wInst...44

4.2.3. Javavm: Java Runtime Environment..45

4.2.4. opsi-admin..45

4.2.5. Swaudit and hwaudit: Products for hardware and software inventories..45

4.3. Integration of new software packets into the opsi software deployment..45
4.3.1. Create an opsi-wInst script...45

4.3.1.1. Overview..45

4.3.1.2. Integration with unattended or silent setup..46

4.3.1.2.1. Search unattended.sourceforge.net and others...47

4.3.1.2.2. Search the software producers site...48

4.3.1.2.3. Search the setup tool manufacturers site..48

4.3.1.2.4. Installation with a logged on user...50

4.3.1.3. Work with MSI-packages...51

4.3.1.4. Customizing after a silent/unattended installation..52

4.3.1.5. Integration with automated answers for the setup program..53

3

4.3.1.6. Analyze and repackage...56

4.3.1.6.1. Hints for execution of WinINSTALL LE...57

4.3.1.6.2. Orca..59

4.3.1.7. Internal structure of an integrated product...60

4.3.1.7.1. Tasks of the opsi installer wInst (for Windows)...61

4.3.1.7.2. General hints for writing a Winst-script...61

4.3.1.7.2.1. What if the installation needs a reboot...61

4.3.1.7.2.2. Files copy..62

4.3.1.7.2.3. Start menu entries...62

4.3.1.7.2.4. System software dependencies...63

4.3.1.7.2.5. Options in the wInst script..64

4.3.1.8. How to deinstall products...65

4.3.1.8.1. Using an uninstall routine...65

4.3.1.8.2. Useful wInst commands for uninstall...66

4.3.2. Creating an opsi package...68

4.3.2.1. Create, pack and unpack a new product...69

4.3.2.2. Create client specific opsi packages...77

5. NETBOOT PRODUCTS: AUTOMATED OS INSTALLATION AND MORE...............79
5.1. Unattended automated OS installation..79

5.1.1. Overview..79

5.1.2. Preconditions..80

5.1.3. PC-client boots via the network...80

5.1.3.1. Loading pxelinux..81

5.1.4. Boot from CD..83

5.1.5. The linux bootimage prepares for reinstallation..83

5.1.6. Installation of OS and opsi-preLoginLoader..86

5.1.7. How the patcha program works...86

5.1.8. Integrating additional drivers in the unattended Windows installation..88

5.1.8.1. Simplified driver integration with symlinks...89

5.1.8.2. Driver integration classic...90

5.2. Ntfs image (write and restore)..91

5.3. Memtest...91

5.4. Wipedisk...92

4

6. OPSI-MODULE: DEPOT SERVER...93
6.1. Overview...93

6.2. Installation and initial operation..93

6.3. Access to the graphic user interface of the depot server via VNC..94

6.4. Shares for software packets and configuration files...95
6.4.1. Samba Configuration...95

6.4.2. Required administrative user accounts and groups..96

6.4.2.1. User opsiconfd...96

6.4.2.2. User pcpatch...97

6.4.2.3. Group pcpatch..97

6.4.2.4. Group opsiadmin..97

6.4.3. Depot share with software packets (install)...97

6.4.4. Config share with configuration and logging (pcpatch)...98

6.4.5. Utils share: Utilities (utils)...98

6.5. Administration of PCs via DHCP...98
6.5.1. What is DHCP?..98

6.5.2. Dhcpd.conf...100

6.5.3. Tools: DHCP administration with Webmin...103

6.6. opsi V3: opsi configuration API, opsiconfd and backend manager..104

7. OPSI-SERVER WITH MULTIPLE DEPOTS...105
7.1. Support...105

7.2. Concept...105

7.3. Creating a (slave) depot-servers...107

7.4. packetmangment with the opsi-package-manager..108

7.5. configuration files..110

8. DHCP AND NAME RESOLVING (DNS)...111

9. OPSI DATA STORAGE (BACKEND)..112
9.1. File backend..112

9.1.1. File3.1-Backend (opsi 3.1)...112

9.1.2. File-Backend (opsi 3.0)..112

5

9.2. LDAP backend...113
9.2.1. Integrating the LDAP-backend..114

9.2.2. Configuring the LDAP-backend..114

9.2.3. Assign the LDAP-backend to methods..114

9.3. MySQL-backend for inventory data..116
9.3.1. overview and datastructure..116

9.3.2. Initializing the MySQL-Backend...122

9.4. Conversion between different backends..123

9.5. Boot files ..124

9.6. Securing the shares with encrypted passwords..124

10. ADAPTING THE OPSI PRELOGINLOADER TO YOUR CORPORATE IDENTITY

(CI)..125

11. OVERVIEW: A PC BOOTS FROM THE NETWORK...126

12. IMPORTANT FILES ON THE DEPOT SERVERS..127
12.1. Configuration files...127

12.1.1. Configuration files in /etc...127

12.1.1.1. /etc/hosts...127

12.1.1.2. /etc/group..127

12.1.1.3. /etc/opsi/pckeys..127

12.1.1.4. /etc/opsi/passwd...128

12.1.1.5. /etc/opsi/backendManager.conf..128

12.1.1.6. /etc/opsi/backendManager.conf/*...128

12.1.1.7. /etc/opsi/hwaudit/*...128

12.1.1.8. /etc/opsi/opsiconfd.conf...128

12.1.1.9. /etc/opsi/opsiconfd.pem...129

12.1.1.10. /etc/opsi/opsipxeconfd.conf...129

12.1.1.11. /etc/opsi/version...129

12.1.1.12. /etc/init.d/...129

12.2. Boot files...129
12.2.1. Boot files in /tftpboot/linux..129

6

12.2.1.1. pxelinux.0...129

12.2.1.2. install und miniroot.gz..130

12.2.2. Boot files in /tftpboot/linux/pxelinux.cfg...130

12.2.2.1. 01-<MAC address> or <IP-NUMBER-in-Hex>..130

12.2.2.2. default...130

12.2.2.3. install..130

12.3. Files of the File-Backend...130
12.3.1. File3.1-Backend...130

12.3.1.1. Overview..130

12.3.1.2. Configuration files in '/var/lib/opsi/config'...131

12.3.1.2.1. clientgroups.ini...131

12.3.1.2.2. global.ini...131

12.3.1.3. Configuration files in /var/lib/opsi/config/clients...132

12.3.1.3.1. <pcname>.ini..132

12.3.1.3.1.1. [generalconfig]..132

12.3.1.3.1.2. [networkconfig]..133

12.3.1.3.1.3. [localboot_product_states]...134

12.3.1.3.1.4. [netboot_product_states]..134

12.3.1.3.1.5. [<product>-state]..134

12.3.1.3.1.6. [<product>-install]..134

12.3.1.3.1.7. [info]...134

12.3.1.4. Configuration files in /var/lib/opsi/config/templates..135

12.3.1.5. Configuration files in /var/lib/opsi/config/depots/<depotid>...135

12.3.1.6. Product control files in /var/lib/opsi/config/depots/<depotid>/products.......................................135

12.3.2. File-Backend (opsi 2.x/3.0)..138

12.3.2.1. Configuration files in /tftpboot/opsi...138

12.3.2.1.1. *.sysconf-files...138

12.3.2.1.2. global.sysconf...138

12.3.2.1.3. domain.sysconf...139

12.3.2.1.4. <pcname>.sysconf..140

12.3.2.2. Configuration files in the opsi config and utils file shares...140

12.3.2.2.1. Function and configuration of <pcname>.ini files ..140

12.3.2.2.2. Software-product-information file: produkte.txt..142

12.3.2.2.3. Software-product-path and script-information: pathnams.ini...143

12.3.2.3. Help files produkte.txt and pathnams.ini..144

7

12.4. Files of the LDAP-backend...145

12.5. Opsi programs and libraries...145
12.5.1. Python library...145

12.5.2. Programs in /usr/sbin...145

12.5.3. Programs in /usr/bin...146

12.6. opsi-log files..147
12.6.1. /var/log...147

12.6.2. /var/log/opsi/opsiconfd...147

12.6.3. /var/log/opsi/bootimage...147

12.6.4. /var/log/opsi/opsipxeconfd...147

12.6.5. Software installation (c:\tmp)...147

13. REGISTRY ENTRIES ...149
13.1. Registry entries for the opsi-preLoginLoader..149

13.1.1. opsi.org/general..149

13.1.2. opsi.org/shareinfo...149

13.1.3. opsi.org/preloginloader..150

13.2. Registry-entries for opsi-wInst...152
13.2.1. Controlling the logging via syslog protocol...152

14. HISTORY...154
14.1. Differences of opsi version 3 to version 2...154

14.1.1. Overview (What you should read)...154

14.1.2. Conceptual...154

14.1.3. Improvement of the handling...156

14.1.4. Vocabulary...157

14.1.5. Migration to opsi V3..159

14.2. Difference between opsi Version 3.1 and Version 3.0...159
14.2.1. Overview..159

14.2.2. What you should read..160

14.2.3. Backend..161

14.2.4. Migration to opsi V3.1...161

14.3. Difference between opsi version 3.2 and version 3.1..161
14.3.1. Overview..161

14.3.2. What you should read..163

8

14.3.3. Migration to opsi V3.2...163

15. GLOSSARY...164

16. TABLE OF FIGURES..170

17. ADDITIONS AND CHANGES..171
17.1. opsi 2.4 to opsi 2.5..171

17.2. Additions opsi 2.5 (9/25/06)...171

17.3. Additions opsi 2.5 / opsi 3.0 (12/8/06)...171

17.4. Additions opsi 3.0 (1.2.07)...171

17.5. Additions opsi 3.0...172

17.6. Additions opsi 3.1 (15.6.07)...172

17.7. Additions opsi 3.2 (21.11.07)...173

9

1. Introduction

1. Introduction

1.1. Who should read this manual?

This manual is written for all who want to gain a deeper insight into the mechanisms and
the tools of the automatic software distribution system opsi ("open pc server
integration"). It presents a complete HOWTO for the use of opsi while emphasizing the
understanding of the technical background. The decision maker who decides on using
opsi as well as the system administrator who works with it will get a solid foundation for
their tasks.

1.2. Notations

Angle brackets < > mark abstract names. In a concrete context any marked <abstract
name> must be replaced by some real name. Example: The file share, where opsi
places the software packets, may abstractly be noted as <opsi-depot-share>. If the real
fileshare is /opt/pcbin/install, then you have to replace the abstract name by exactly this
string. The location of the packet <opsi-depot-share>/ooffice becomes
/opt/pcbin/install/ooffice.

Example snippets from program code or configuration files use a Courier font, with
background color grey:
depoturl=smb://smbhost/sharename/path

10

2. Overview of opsi

2. Overview of opsi

Tools for automated software distribution and operating system installation are
important and necessary tools for standardization, maintainability and cost saving of
larger PC networks. Normally the application of such tools comes along with substantial
royalties, whereas opsi as an open source tool affords explicit economics. Expenses
thereby arise only from performed services like consulting, education and maintenance.

Although the software itself and the handbooks are free of charge, the process of

introducing any software distribution tool is still an investment. To get the benefit without

throwbacks and without a long learning curve consulting and education of the system

administrators by a professional partner is recommended. uib offers all these services

around opsi.

The opsi system as developed by uib depends (in its complete version) on UNIX-/Linux-

servers. They are used for remote installation and maintenance of the client OS and the

client software packets ("PC-Server-Integration"). It is based as far as possible on free

available tools (GNU-tools, SAMBA etc.). The complete system all together is named

opsi (Open PC-Server-Integration) and with its configurability is a very interesting

solution for the administration challenges of a large computer park.

2.1. Experience
opsi is derived from a system, which is in use since the middle of the 90's with more
than 2000 Client-PCs in different locations of a state authority. Since that time it has
continuously been adapted to the changing Microsoft operating system world. As a
product opsi is now accessible for a broad range of interested users.
You can find an geographical overview of the registered opsi-installations at:
http://www.opsi.org/map/.

2.2. opsi features

The main features of opsi are:

● automatic software distribution

11

2. Overview of opsi

● automatic operating system installation

● hard- and software inventory with history

● comfortable control via the opsi management interface

● support of multiple depot-servers

The functionality of opsi is based on the opsi depot server which allocates the server-
sided services.

2.3. What's new at opsi 3.3

● support of multiple depot-servers

● The multi-depotshare extension gives you the opportunity of a central
administration for different locations

● At every location an opsi depot-server provides the shares and the TFTP/
PXE bootserver functionality, while the administration and the
configuration data backend is still handled by the central opsi-server.

● A decentral opsi depot-server can be easily installed and integrate with the
central configuration server.

● Up to now, these new functions are only implemented for the 'File31-
Backend'. The new LDAP-Backend is coming soon.

● The multi-depotshare extension is part of the 'Professional Edition'. It is
open source, but for getting support you will need a professional support
contract.

● opsi-package-manager: The new package administration tool

● Installs and deinstalls opsi packages on one ore more opsi depot-servers.
(Replacing the deprecated commands opsiinst and opsiuninst)

● Lists which packages installed on which server

● Shows installation differences between different depot-servers

12

2. Overview of opsi

● Extracts opsi packages for modification purpose.

● opsi-configed enhancement

● support of multiple depots

● client MAC-address now editable

● enhanced client creation dialog

● MySQL-backend for inventory data with history function

● opsi-winst extensions

● opsi-winst now has a new skin, and has become skinnable: other skins
may be easily constructed without programming, e.g. for integration in a CI
concept.

● New Command 'ExitWindows /ShutdownWanted' for shutdown after all
installations have finished

● New copy option suppressing automatic reboots if the target file was in
use

● New function for retrieving the system locales

● New function for retrieving the version informations of windows files

● New function for catching the exit code of called programs

● New secondary section for the execution of scripts with arbitrary external
interpreters

● New function for retrieving strings from a map (string list with elements
key=value)

● Easier building of partials lists

● Run time debugging support for srcipt execution

● Enhanced opsi-agent 'preloginloader'

13

2. Overview of opsi

● no reboot on preloginloader rollout with the opsi-preloginloader-deploy
script.

● Faster reaction if the opsi-server is missing

● inital installation of the login blocker as default

● no more permanent local user pcpatch

● Automatic and enhanced MAC-address detection

● enhanced installation program

● extended automatic driver integration used for the OS-Installation

● extended opsi-admintools functionality

● Up-to-date opsi-configed as application

● Extracting opsi-packages under Windows:: 7-zip

● Editor (not only) with opsi-winst syntax-highlightning: jedit

● SSH-Terminal: Putty

● Compare and merger text files:: WinMerge.

● XML-Editor: Pollo

● XML-Diff-Tool

● LDAP-Explorer: JXplorer

● Tool for interactive setups with recorded answers: Autohotkey.

● Setup Switch detector: Ussf

● new linux bootimage

● Up-to-date kernel

● NTFS write support

14

2. Overview of opsi

● Enhanced WakeOnLAN function

● some bugfixes

● opsi 2.x/3.0 File-Backends are now deprecated

● users of this Backend should change to the File31-Backend

● New documentations and installation media

Vocabulary:

config-server the functionality which provides managment and storage of

opsi configuration data

depot-server the functionality which provides software depot shares and

tftpservice for opsi based PXE boot.

opsi-server a server which provides opsi functionalilty most times ->

config-server and -> depot-server.

2.4. What you should read in case of a upgrade to opsi 3.3

At this manual.

● 3.2.3 Depot selection on page 18

● 3.2.5 Client processing / WakeOnLan / Create a Client / Move a Client on page
20

● 3.4 Tool: opsi-package-manager: (de-)installs opsi-packages on page 28

● 5.1.8.1 Simplified driver integration with symlinks on page 88

● 7 opsi-server with multiple depots on page 104

● 9.3 MySQL-backend for inventory data on page 115

In the opsi-winst manual:

15

2. Overview of opsi

● ExitWindows /ShutdownWanted

16

3. opsi configuration and tools

3. opsi configuration and tools

3.1. Overview

The configuration of opsi requires some data management. In opsi V2 there only was a
file based data management and the old tools operated directly on the files (they still
can be used with the file backend). Since opsi V3 there are several types of data
management backends available and new tools which are using a web service for data
exchange. They exchange data via the 'opsiconfd', and the 'opsiconfd' forwards the data
to the backend manager which passes the data into the selected backend. More about
this is to be found in chapter 'data management of opsi'.

The default backend is the File31 backend.

3.2. Tool: opsi V3 opsi-Configed

3.2.1. Requirements and operation

The opsi-configed requires Java 1.6 and a running opsiconfd on the server.

The opsi-configed is one component of the client product 'opsi-adminutils' and can be
started from the opsi-adminutils-group in the start menu.

On the server the opsi-configed will be installed as debian packet (opsi-
configed.xxxxx.deb) and can be started with a menu entry in the desktop menu as well
as /usr/bin/opsi-configed.

Also it can be started with java -jar configed.jar.

The help option java -jar configed.jar --help shows the available command
line options.
P:\install\opsi-adminutils>java -jar configed.jar --help
starting configed
default charset is windows-1252
server charset is configured as UTF-8
configed [OPTIONS]...
Options:
 -l, --locale Set locale (format: <language>_<country>)

17

3. opsi configuration and tools

 -h, --host Configuration server to connect to
 -u, --user Username for authentication
 -p, --password Password for authentication
 -d, --logdirectory Directory for the log files
 --help Show this text
The default port is port 4447. A different port can be selected together with the host
parameter, like '<host>:<port>'.

3.2.2. Login

At login time the opsi-configed tries to connect the opsi server via https. The login is
done with the given parameters opsi server[:Port] (default port 4447 – opsiconfd) and
the User/Password of the opsi depot server account. For a successful login the provided
user has to be a member of the unix-group 'opsiadmin'.

3.2.3. Depot selection

All depots integrated with your server are listed in the upper left corner of the opsi-
configed. By default the depot on your opsi-config-server is selected and the clients
belonging to this depot are shown. If you select multiple depots (in the usual manner of
multi-item-selection in a list , eg. with shift/ctrl + click) you have to reload the data for
getting any effects. If the selected server set is not synchronous (and can therefore not
be handled on common grounds) your are told so. Otherwise the client list of the
combined depots is shown, and their configurations may be editied.

18

Figure 1: opsi-Configed: login mask

3. opsi configuration and tools

3.2.4. Single client selection and batch selection

After a successful login the main window pops up and shows the tab 'Client selection'.
This tab shows a list of known clients with the columns 'client name', 'description' and
'last seen'.

● 'client name' is the 'full qualified hostname' which is the client name including the
domain name

● 'description' is a free selectable description which you can edit in the right top
part of the window

● 'last seen' shows the date and a time of the last client connect to the opsiconfd
web service

To sort the clients by a certain column click on the top header of that column.

19

Figure 2: opsi-Configed: client selection mask

3. opsi configuration and tools

You can select one or multiple clients to work with. The client view can be restricted to
the selected clients by clicking the funnel icon or from the menu by 'Grouping / Show
only selected clients'.

A selected client group can be saved with the icon 'Save grouping' or from the menu by
'Grouping / save group' with a free selectable name.

With the icon 'Set client group' or 'Grouping / set client group' saved groups can be
loaded.

With the function 'Set client group' you can build client groups by certain criteria (e.g.: all
clients which have the product 'firefox' with the installation status 'installed').

3.2.5. Client processing / WakeOnLan / Create a Client / Move a Client

You can select one or more clients and send them a 'WakeOnLan' signal by choosing
this option from the menu 'OpsiClient'.

In the same menu you find the option for deleting selected clients, and creating a client.

If you choose to create a client an input mask opens. There you enter or confirm the
required data – client name without domain specification, domain name, depot server
name. You may add a textual description for this client and notes on this client.

20

Figure 3: opsi-Configed: mask: group setting

3. opsi configuration and tools

The mask also contains fields for an optional declaration of the IP-number and the
ethernet (MAC) address of a client. If the backend is activated for the configuration of a
local dhcp-server (which is not the default setting), this information will be used to make
the new client known to the dhcp-server. Otherwise the MAC address will be saved in
the 'File31'-backend in <pcname>.ini and the IP-number will be discarded.

In version 3.3 a menu item was added for moving a client to a different depot-server. If
clicked the following windows appears with a list of existing depot-servers (only
supported for professional support contracts):

21

Figure 4: creating a client

3. opsi configuration and tools

3.2.6. Product configuration

Switching to the tab 'Product configuration' you get a list of available software packets
with its installation status and action status for the selected clients. If there is a different
status for the selected clients this will be marked grey ('undefined'). The list of the
selected clients is shown at right on top. You can also sort the product list by clicking at
the column header.

● 'installation state' is the last announced state of the product and can hold the
values 'installed', 'not installed', 'installing', 'undefined' and 'failed'. 'failed' means
that the installation script announced an installation abort. 'Undefined' means the
multiple selected clients have a different state. 'Installing' is the state during an
product installation

● 'action request' is the next action to start. Possible values are 'none', 'undefined'
and actions declared by the product script like: 'setup', 'deinstall', 'once', 'always'

22

Figure 5: change the depot of a client

3. opsi configuration and tools

● 'version' is the version number of the software installed on the client (as defined
in the opsi packet)

● 'package' is the package number of the opsi-packet installed on the client

Choose a software product to get more product information in the right part of the
window like:

'Complete product name': full product name of that software packet

'Softwareversion': software version number of the software packet (specified in the opsi
installation packet)

'Packageversion': version of the packet

'Product description': free text to describe the software

'Hints': free text with advices and caveats for handling the packet

'Requirements': A list of packets which the selected product depends on and the type of
dependency: 'required' means the chosen product requires that packet, but it doesn't

23

Figure 6: opsi-Configed: product configuration mask

3. opsi configuration and tools

matter whether it is installed before or after the product itself. 'pre-required' means that
packet has to be installed before the product installation. 'post-required' means the
packet needs to be installed after the product installation. 'on deinstall' means this
action should take place before the chosen product will be de-installed.

'Switches': For a client specific configuration additional product specific switches can be
defined by the product. The list of available switches is shown. The meaning of the
switch is shown in the tool tip (when the cursor is moved over the switch name). Under
'property value' you get a list of permitted options for this switch. If there is no list, the
packet does not provide a restricted option list and the value can be any free text.

3.2.7. Netboot products

The products on tab 'Netboot products' are mainly used to install the client OS
(operating system) and are listed and configured like the products on tab 'Product
configuration'.

If for the selected client(s) a netboot product is set to 'setup', the correspondent
bootimage will be loaded and executed at the next client reboot.

This is usually done to initiate an OS installation or any other bootimage task (like a
memory test etc.)

24

3. opsi configuration and tools

3.2.8. Hardware information

With this tab you get the last detected hardware information for this client (only available
if a single client is selected).

25

Figure 7: opsi-Configed: mask to start the bootimage

3. opsi configuration and tools

3.2.9. Software inventory

Figure 9: opsi-Configed: Software information for the selected client

26

Figure 8: opsi-Configed: Hardware informations for the selected client

3. opsi configuration and tools

With this tab you get the last known software information for this client (only available if
a single client is selected).

3.2.10. Server configuration: network and additional settings

With the tab 'Network and additional settings' you can provide settings for the network
configuration of opsi and other optional configurations. The options are described in
chapter 6.1 “Filebackends / File31 / <pcname>.ini”.

3.3. Tool: opsi V3 opsi-Webconfiged

The 'configed' as described above is available as an applet if the debian-packet 'opsi-
configed' is installed on the server.

27

Figure 10: opsi-Configed: network and additional configuration

3. opsi configuration and tools

Start configed from a browser: http[s]://<servername>:<port>/configed/
Example: https://dpvm03:4447/configed/

3.4. Tool: opsi-package-manager: (de-)installs opsi-packages

The opsi-package-manager is used for (de-)installing opsi-packages on an opsi-server.
opsi-package-manger replaces the former and now deprecated commands opsiinst and
opsiuninst.

In order to install a opsi-package this opsi-package must be readable for the opsi
system user opsiconfd. Therefore it is strongly recommended to install those packages
from the directory /home/opsiproducts (or a sub directory).

Install a package (asking no questions):
opsi-package-manager -i softprod_1.0-5.opsi

Install a package (asking questions):
opsi-package-manager -p ask -i softprod_1.0-5.opsi

Install a package (and switch required action to setup where installed):
opsi-package-manager -S -i softprod_1.0-5.opsi

Deinstall a package (asking no questions)::
opsi-package-manager -r softprod

Calling opsi-package-manager with option -h gives a listing of possible options.
The option -d or --depots are reserved for the use in a multi-depot-server environment
and you will get commercial support only based on a professional support contract.
Using option -d the opsi-package will be copied to the /var/lib/opsi/products directory of
the target server before installing. Please make sure that there is enough free space on
this file system. See also:
chapter 7 opsi-server with multiple depots page 104
svmopside:~# opsi-package-manager -h
Usage: opsi-package-manager [options] <command>

28

3. opsi configuration and tools

Manage opsi packages
Commands:
 -i, --install <opsi-package> ... install opsi packages
 -u, --upload <opsi-package> ... upload opsi packages to repositories
 -l, --list <regex> list opsi packages matching regex
 -D, --differences <regex> show depot differences of opsi
 packages matching regex
 -r, --remove <opsi-product-id> uninstall opsi packages
 -x, --extract <opsi-package> ...extract opsi packages to local directory
 -V, --version show program's version info and exit
 -h, --help show this help message and exit
Options:
 -d, --depots <depots> comma separated list of depots to process
 (default: <this-host>.<myDomain>)
 use keyword ALL to process all known depots
 --direct-install install package directly without repository upload
 -p, --properties <mode> mode for default product property values
 ask display dialog
 package use defaults from package
 keep keep depot defaults (default)
 -f, --force force install/uninstall (use with extreme caution)
 -U, --update set action "update" on hosts where
 installation status is "installed"
 -S, --setup set action "setup" on hosts where
 installation status is "installed"
 --max-transfers <num> maximum number of simultaneous uploads
 0=unlimited (default)
 -o, --overwrite overwrite existing package even if size matches
 -k, --keep-files do not delete client data dir on uninstall
 --interface <type> type of user interface
 text text based interface
 snack newt interface (default)
 -v, --verbose increase verbosity (can be used multiple times)
 -q, --quiet do not display any messages
 --log-file <log-file> path to debug log file

3.5. Tool: opsi V3 opsi-admin

New in opsi V3.

3.5.1. Overview

opsi V3 introduced an opsi owned python library which provides an API for opsi
configuration. The 'opsiconfd' provides this API as a web service, whereas 'opsi-admin'
is the command line interface for this API.

29

3. opsi configuration and tools

'opsi-admin' provides an interactive mode and a non interactive mode for batch
processing from within scripts.

The help option opsi-admin -h shows a list of available command line options:
opsi-admin -h
Usage: opsi-admin [-u -p -a -d -l -f -i -c -s] [command] [args...]

 -h, --help Display this text
 -u, --username Username (default: current user)
 -p, --password Password (default: prompt for password)
 -a, --address URL of opsiconfd (default: https://localhost:4447/rpc)
 -d, --direct Do not use opsiconfd
 -l, --loglevel Set log level (default: 2)
 0=nothing, 1=critical, 2=error, 3=warning, 4=notice,
5=info, 6=debug
 -f, --log-file Path to log file
 -i, --interactive Start in interactive mode
 -c, --colorize Colorize output
 -S, --simple-output Simple output (only for scalars, lists)
 -s, --shell-output Shell output

'opsi-admin' can use the opsi web service or directly operate on the data backend. To
work with the web service you have to provide the URL and also an user name and
password. Due to security reasons you probably wouldn't like to do this from within a
script. In that case you'd prefer direct access to the data base using the -d option:
opsi-admin -d.

In interactive mode (start with opsi-admin -i or opsi-admin -d -i -c) you get input
support with the TAB-key. After some input, with the TAB-button you get a list or details
of the data type of the next expected input.

The option -s or -S generates an output format which can be easily parsed by scripts.

There are some methods which are directly based on API-requests, and there are some
'tasks', which are a collection of function calls to do a more complex special job.

30

3. opsi configuration and tools

3.5.2. Typical use cases

3.5.2.1. Delete product

The method is 'deleteProduct <productId>'. The command line request for deleting the
product 'softprod' is:
opsi-admin -d method deleteProduct "softprod"

3.5.2.2. Set a product to setup for all clients which have this product installed
opsi-admin -d task setupWhereInstalled "softprod"

3.5.2.3. Client delete
opsi-admin -d method deleteClient <clientname>
For example:
opsi-admin -d method deleteClient pxevm.uib.local

3.5.2.4. Client create
opsi-admin -d method createClient <clientname> <domain>
For example:
opsi-admin -d method createClient pxevm uib.local

3.5.2.5. Client boot image activate
opsi-admin -d method setBootimage <OS-Produkt> <clientname>
For example:
opsi-admin -d method setBootimage win2k pxevm

3.5.2.6. Attach client description
opsi-admin -d method setHostDescription "dpvm02.uib.local" , "Client
unter Vmware"

3.5.2.7. Set pcpatch password
opsi-admin -d task setPcpatchPassword
Set the password of user pcpatch for Unix, samba and opsi.

3.5.3. List of methods

Here comes a short list of some methods with a short description. This is meant mainly
for orientation and not as a complete reference. The short description does not
necessarily provide all information you need to use this method.

31

3. opsi configuration and tools

method addHardwareInformation <hostId>, <info>
Adds hardware information for the computer <hostid>. The hash <info> is passed.
Existing information will be overwritten for matching keys. Applicable for special keys
only.
method authenticated
Prove whether the authentication on the server was successful.
method checkForErrors
Test the backend for consistency (only available for file backend by now).
method createClient <clientName>, <domain>, description=None, notes=None
Creates a new client.
method createGroup <groupId>, members = [], description = ""
Creates a group of clients (as used by the opsi-Configed).
method createLicenseKey <productId>, <licenseKey>
Assigns an (additional) license key to the product <productId>.
method createLocalBootProduct <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0, setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=('localBoot')

Creates a new localBoot product (wInst-Product).
method createNetBootProduct <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0, setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=('netboot')

Creates a new netBoot (boot image) product.
method createOpsiBase
For internal use with the LDAP-backend only.
method createProduct <productType>, <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0,setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=""

Creates a new product.
method createProductDependency <productId>, <action>, requiredProductId="",

requiredProductClassId="", requiredAction="",
requiredInstallationStatus="", requirementType=""

Creates product dependencies.
method createProductPropertyDefinition <productId>, <name>, description=None,

defaultValue=None, possibleValues=[]

32

3. opsi configuration and tools

Creates product properties.
method createServer <serverName>, <domain>, description=None
Creates a new server in the LDAP-backend.
method createServerProduct <productId>, <name>, <productVersion>,

<packetVersion>, licenseRequired=0,setupScript="", uninstallScript="",
updateScript="", alwaysScript="", onceScript="", priority=10,
description="", advice="", productClassNames=('server')

Not implemented yet – for future use.
method deleteClient clientId
Deletes a client.
method deleteGeneralConfig <objectId>
Deletes a client configuration or domain configuration.
method deleteGroup <groupId>
Deletes a client group.
method deleteHardwareInformation <hostId>
Deletes all hardware information for the computer <hostid>.
method deleteLicenseKey <productId>, <licenseKey>
Deletes a license key for product <productId>.
method deleteNetworkConfig <objectId>
Deletes network configuration (for example depot share entry) for a client or domain.
method deleteOpsiHostKey <hostId>
Deletes a pckey from the pckey data base.
method deleteProduct <productId>
Deletes a product from the data base.
method deleteProductDependency <productId>, <action>, requiredProductId="",

requiredProductClassId="", requirementType=""
Deletes product dependencies.
method deleteProductProperties <productId> *objectId
Deletes all properties of a product.
method deleteProductProperty <productId> <property> *objectId
Deletes a single product property.
method deleteProductPropertyDefinition <productId>, <name>
method deleteProductPropertyDefinitions <productId>

33

3. opsi configuration and tools

Deletes a single property or all properties from the product <productId>.
method deleteServer <serverId>
Deletes a server configuration
method exit
Quit the 'opsi-admin'.
method getBackendInfos_listOfHashes
Supplies information about the available backends of the opsi depot server and which of
them are activated.
method getBootimages_list
Supplies the list of the available boot images.
method getClientIds_list serverId = None, groupId = None, productId = None,

installationStatus = None, actionRequest = None
Supplies a list of clients which meet the assigned criteria.
method getClients_listOfHashes serverId = None, groupId = None, productId =

None, installationStatus = None, actionRequest = No
Supplies an extended list of clients which meet the assigned criteria (with description,
notes and 'last seen' for each client).
method getDefaultNetBootProductId <clientId>
Supplies the netboot product (for example: system software) which will be installed
when the boot image 'install' is assigned.
method getDomain <hostId>
Supplies the computer domain.
method getGeneralConfig_hash <objectId>
Supplies the general configuration of a client or a domain.
method getGroupIds_list
Supplies the list of saved client groups.
method getHardwareInformation_listOfHashes <hostId>
Supplies the hardware information of the specified computer.
method getHostId <hostname>
Supplies the hostid of the specified host name.
method getHost_hash <hostId>
List of properties of the specified computer.

34

3. opsi configuration and tools

method getHostname <hostId>
Supplies the host name of the specified host id.
method getInstallableLocalBootProductIds_list <clientId>
Supplies a list of all localBoot products that could be installed on the client.
method getInstallableNetBootProductIds_list <clientId>
Supplies a list of all netBoot products that could be installed on the client.
method getInstallableProductIds_list <clientId>
Supplies a list of all products that could be installed on the client.
method getInstalledLocalBootProductIds_list <hostId>
Supplies a list of all localBoot products that are installed on the client.
method getInstalledNetBootProductIds_list <hostId>
Supplies a list of the installed netBoot products of a client or server.
method getInstalledProductIds_list <hostId>
Supplies a list of the installed products for a client or server.
method getIpAddress <hostId>
Supplies the IP address of a host.
method getLicenseKey <productId>, <clientId>
(For future use) Supplies an available license key of the specified product or the product
license key which is assigned to the client.
method getLicenseKeys_listOfHashes <productId>
(For future use) Supplies a list of all license keys for the specified product.
method getLocalBootProductIds_list
Supplies a list of all (for example in the LDAP-tree) known localBoot products.
method getLocalBootProductStates_hash clientIds = []
Supplies for all clients the installation status and action request of all localBoot
products.
method getMacAddresses_list <hostId>
Supplies the MAC address of the specified computer.
method getNetBootProductIds_list
Supplies a list of all NetBoot products.
method getNetBootProductStates_hash clientIds = []

35

3. opsi configuration and tools

(For future use) Supplies for all clients the installation status and action request of all
netBoot products.
method getNetworkConfig_hash <objectId>
Supplies the network specific configurations of a client or a domain.
method getOpsiHostKey <hostId>
Supplies the pckey of the specified hostid.
method getPcpatchPassword <hostId>
Supplies the password of pcpatch (encrypted with the pckey of hostId).
method getPossibleMethods_listOfHashes
Supplies the list of callable methods (approximately like in this chapter).
method getPossibleProductActionRequests_list
Lists the available action requests of opsi.
method getPossibleProductActions_hash
Supplies the available actions for each product (setup, deinstall,....).
method getPossibleProductActions_list productId=None
Supplies the list of all actions (setup, deinstall,....).
method getPossibleProductInstallationStatus_list
Supplies the list of all installation stati (installed, not installed,...).
method getPossibleRequirementTypes_list
Supplies the list of types of product requirement (before, after,...).
method getProduct_hash <productId>
Supplies the meta data (description, version,...) of the specified product.
method getProductActionRequests_listOfHashes <clientId>
Supplies the list of upcoming actions of the specified client.
method getProductDependencies_listOfHashes productId = None
Supplies the list of product dependencies of all or the specified product.
method getProductIds_list productType = None, hostId = None,

installationStatus = None
Supplies a list of products which meet the specified criteria.
method getProductInstallationStatus_hash <productId>, <hostId>
Supplies the installation status for the specified client and product.
method getProductInstallationStatus_listOfHashes <hostId>

36

3. opsi configuration and tools

Supplies the installation status of the specified client.
method getProductProperties_hash <productId>, objectId = None
Supplies the product properties of the specified product and client.
method getProductPropertyDefinitions_hash
Supplies all known product properties with description, allowed values,... .
method getProductPropertyDefinitions_listOfHashes <productId>
Supplies the product properties of the specified product with description, allowed
values,... .
method getProductStates_hash clientIds = []
Supplies installation status and action requests of all products (for the specified clients).
method getProduct_hash <productId>
Supplies the meta data (description, version, ...) of the product
method getProvidedLocalBootProductIds_list <serverId>
Supplies a list of available localBoot products on the specified server.
method getProvidedNetBootProductIds_list <serverId>
Supplies a list of available netBoot products on the specified server.
method getServerId <clientId>
Supplies the opsi depot server in charge of the specified client.
method getServerIds_list
Supplies a list of the known opsi depot server.
method getServerProductIds_list
Supplies a list of the server products.
method getUninstalledProductIds_list <hostId>
Supplies the products which are uninstalled.
method powerOnHost <mac>
Send a WakeOnLan signal to the specified MAC address.
method setBootimage <bootimage>, <hostId>, mac=None
Set a boot image for the specified client.
method setGeneralConfig config, objectId = None
Set for client or domain the generalConfig
method setHostDescription <hostId>, <description>

37

3. opsi configuration and tools

Set a description for a client.
method setHostLastSeen <hostId>, <timestamp>
Set the 'last seen' time stamp of a client.
method setHostNotes <hostId>, <notes>
Set the notes for a client.
method setMacAddresses <hostId>, <macs>
Set the client MAC address in the data base.
method setNetworkConfig <objectId>, serverId='', configDrive='', configUrl='',

depotDrive='', depotUrl='', utilsDrive='', utilsUrl='', winDomain='',
nextBootServiceURL=''

Set the specified network data for the opsi-preloginloader for a client.
method setOpsiHostKey <hostId>, <opsiHostKey>
Set the pckey for a computer.
method setPXEBootConfiguration <hostId> *args
Set the pipe for PXE-Boot with *args in the 'append'-List
method setPcpatchPassword <hostId> <password>
Set the encrypted (!) password for hostid
method setProductActionRequest <productId>, <clientId>, <actionRequest>
Set an action request for the specified client and product.
method setProductInstallationStatus <productId>, <hostId>,

<installationStatus>, policyId="", licenseKey=""
Set an installation status for the specified client and product (policyId and licenseKey
are for future use).
method setProductProperties <productId>, <properties>, objectId = None
Set the product properties for the specified product (and the specified client).
method unsetBootimage <hostId>
Unset the boot image start for the specified client.
method unsetPXEBootConfiguration <hostId>
Delete PXE-Boot pipe.
method unsetProductActionRequest <productId>, <clientId>
Set the action request to 'undefined' so LDAP policies are in charge for this client.

38

4. Localboot products: automatic software distribution with opsi

4. Localboot products: automatic software distribution with opsi

4.1. opsi-preloginloader

4.1.1. Overview

To make Software distribution manageable for the system administrator, a client

computer has to notice that new software-packets or updates are available and install

them without user interaction. It is important to make user-interaction completely

obsolete as the installation can run unattended this way and a user cannot stop the

installation during the installation process.

These requirements are implemented by two software components:

On the client side at boot time before the user logs in the opsi preLoginLoader

examines whether an update has to be installed for this client.

If there are software packets to be installed on the client, the script processing program

'wInst' is being started to do the installation job. The server provides all the installation

scripts and software packets on a file share. At this time the user has no chance to

interfere with the installation process.

39

Figure 11: Automatic software distribution on a client. An opsi server provides
configuration information and installable software packets.

4. Localboot products: automatic software distribution with opsi

As an additional option the module 'loginblocker' can be installed to prevent a user login

before the end of the installation process is reached.

Before software packets can be installed with the 'wInst' program, they have to be

prepared as opsi packets. The 'wInst' executable supports the opsi wInst script

processing language and and provides different ways of installation:

• Existing setup programs from the original software manufacturer can be executed

from within a wInst script in 'silent' or 'unattended' mode. It depends on the setup

program whether silent installation mode is supported

• The standard setup can be analyzed and 'recorded' to do the installation tasks

directly by the 'wInst' program. Usually that is something like file installation to the

local file system and patching the registry

• The interactive answers required by the original setup program can be given

automatically by using the free tool 'autoiIt' (www.hiddensoft.com/autoit/). That means

providing an autoIt script for unattended installation

Usually a combination of all different ways in one script does the job best. Like doing

the basic installation by the original setup if available and then do some customizing by

patching registry or file based configuration.

4.1.2. Integration of the software installation with the opsi preLoginLoader

The primary objective of software distribution is to accomplish automatic software

installation without user interaction. Software installation and user activity should be

strictly separated. In most cases the installation process requires administrative

privileges which the user usually doesn't have. So the installation process has to be

done independently from the user. In that way neither the user can interfere with nor the

user is affected by a software installation process.

40

http://www.hiddensoft.com/autoit/

4. Localboot products: automatic software distribution with opsi

The opsi preLoginLoader consists of four components: prelogin.exe, pcptch.exe,

wInst32.exe and the optional Loginblocker. The prelogin.exe starts as a system service

at boot time. That means the task prelogin.exe starts before the user login is available.

The main task of the prelogin.exe is to start the task pcptch.exe and grant access on

the graphical user interface (otherwise the installation process wouldn't be displayed on

screen). Pcptch.exe is started with the privileges of the local 'pcpatch' account

(administrative account), which has been installed during PreLoginLoader installation.

The program pcptch.exe mounts the network file shares which provide the software

installation packets (and the PC configuration files if file backend is applied). The

configuration for the installation process is provided by the opsi depot server. A

description of this configuration information can be found in the related chapters at the

end of this manual.

Then the pcptch.exe starts the opsi Installation program wInst.exe and passes the

information which packets to install. After wInst.exe completed the installations, the

status information is passed back to the opsi depot server. While the installation is still

in progress, the loginblocker prevents the user login. When the installation is done,

wInst.exe and pcptch.exe terminate and the user login screen is enabled.

Often an installation packet requires one or several reboots. In that case the installation

script launches an immediate system restart. Then at system restart the installation

process resumes control again and continues with the installation.

4.1.3. Subsequent installation of the opsi-preloginloaders

If you would like to integrate an already installed computer in the software distribution
system (that means the OS had been installed before), you need to install the 'opsi
PreLoginLoader' packet on that computer.

Therefore the pckey (used for password encryption) has to be installed on the client and
the server. Therefore you can choose one of the following methods:

41

4. Localboot products: automatic software distribution with opsi

4.1.3.1. Usage of the opsi-deploy-preloginloader

The opsi-deploy-preloginloader script installs the opsi-preloginloader direct from the
opsi depot server on the clients. Requirements for the clients are:

● an open C$ share

● an open admin$ share

● an administrative account

The script creates the client information on the server and copies the installation files,
the configuration information and the pckey to the client and starts the installation on the
client.

With the opsi-deploy-preloginloader script you can batch install a list of clients. The
script itself is located in /opt/pcbin/install/preloginloader.

Attention: During installation the client reboots without notice!
bonifax:/home/uib/oertel# cd /opt/pcbin/install/preloginloader
bonifax:/opt/pcbin/install/preloginloader# ./opsi-deploy-preloginloader -h
Usage: opsi-deploy-preloginloader [options] [host]...
Deploy opsi preloginloader to the specified clients.
The c$ and admin$ must be accessible on every client.
Options:
 -h show this help text
 -V show version information
 -v increase verbosity (can be used multiple times)
 -u username for authentication (default: Administrator)
 -p password for authentication
 -f file containing list of clients (one hostname per line)

4.1.3.2. Usage of service_setup.cmd

Also in /opt/pcbin/install/preloginloader located is the script service_setup.cmd. This
can be started with administrative privileges from the client side. The script connects to
the opsi-webservice to create the server side client information and to get the pckey.
The connect takes the user/password combination registered in the config.ini. If the
connect fails, a login window pops up to fill in service URL, user and password. The
provided user has to be member of the group 'opsiadmin'.

42

4. Localboot products: automatic software distribution with opsi

Attention: During installation the client reboots without notice!

4.1.4. Blocking the user login with the opsi-Loginblocker

To prevent a user login before all installations completed, opsi provides the optional

Loginblocker module.

The Loginblocker is implemented as a gina.dll. Gina means „Graphical Identification

and Authentication“ and is the official Microsoft hook to manipulate the login process.

The opsi gina is a pgina.dll based on the project http://pgina.xpasystems.com.

If you already have a gina.dll installed which is different from the original msgina (e.g.

Novells nwgina), you should not install the opsi-Loginblocker without consulting uib. It is

possible to chain different gina.dll's, but therefore the installation has to be customized.

Proper chaining of Gina DLLs is a quite critical task and might result in a locked up

computer if done improperly.

Whether the Loginblocker is installed or not this is configured by the switch

LoginBlockerStart=on/off in section [preloginloader-install] of the client configuration.

4.2. opsi standard products

4.2.1. opsi-preloginloader

The 'opsi-preloginloader' packet contains the installation and update mechanism of the
opsi-preloginloader.

4.2.2. opsi-wInst

The 'opsi-wInst' packet is a special case. It includes the actual 'opsi-wInst' winst.exe,
which is updated by the preloginloader packet itself. The pcptch.exe checks the server
for an update of winst.exe and then copies the new winst.exe to the client.

43

http://pgina.xpasystems.com/

4. Localboot products: automatic software distribution with opsi

4.2.3. Javavm: Java Runtime Environment

The product 'javavm' installs the required Java 1.6 runtime environment (required for
opsi-configed) on the clients.

4.2.4. opsi-admin

The product 'opsi-admin' offers some utilities and a local installation of the opsi-
configed.

4.2.5. Swaudit and hwaudit: Products for hardware and software inventories

The products hwaudit and swaudit provide the hardware and software inventories.

The hardware data are acquired using WMI and written to the hardware inventory via
opsi-webservice.

The data for the software inventory are taken from the registry
(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall)
and passed to the inventory server via opsi-webservice.

Both products are based on python and require the python language package installed.

4.3. Integration of new software packets into the opsi software deployment.

4.3.1. Create an opsi-wInst script

4.3.1.1. Overview

For Windows clients there are basically three ways to integrate new software package
into the software deployment, and an additional way for using the Microsoft Installer
Service (MSI).

1. Unattended / Silent Setup:
The original manufacturer setup will be run in a non interactive unattended mode
(command line arguments for unattended setup).

The most important special case of this is

44

4. Localboot products: automatic software distribution with opsi

2. Running a MSI packet in silent mode:
An original software manufacturer MSI package is run in silent mode.

3. Interactive setup with automated answers:
To prepare for this installation mode, first all the windows that pop up during
interactive installation have to be analyzed. Then an 'answer file' is created to
automatically fill in the answers.

4. Analyze and repackage:
First it has to be analyzed (semi automated) what data (files, registry ...) get installed
on the client. This could be done by comparing a plain OS installation before and
after the installation of the software packet in question. Based on this a new package
can be created containing all the new files and registry entries. This package can be
created using wInst tools. It can also be transformed into a MSI package to be
integrated in any distribution mechanism.

In details:

4.3.1.2. Integration with unattended or silent setup

For an „unattended“ or „silent” setup the original setup will be switched to an unattended
non interactive mode by applicable command line arguments.

Once you know the proper command line arguments, the request can be embedded in
a wInst-script.

Here an example how to start a setup with the argument '/silent':

45

4. Localboot products: automatic software distribution with opsi

; Copyright (c) uib gmbh (www.uib.de)
; This sourcecode is owned by uib
; and published under the Terms of the General Public License.
[Initial]
Message=install xyz ...
StayOnTop=false
[Aktionen]
 Winbatch_produkt_silent_install
[Winbatch_produkt_silent_install]
%SCRIPTPATH%\setup_xyz.exe /silent

The command 'stayOnTop=false' is regarding the z-order of visible windows and
enables any tasks started from inside the script to set themselves on top of the script
window. Usually you will like them to be on top to have setup messages, progress bar
and popups of the setup be visible.

To use the unattended setup you would first have to find the command line argument
for silent mode, if there is any. Usually it is something like '/s' or '/silent' or '/s /v"/qb-!"'
What it is exactly depends on the setup itself, so there is no safe way to get an
unattended installation running under all circumstances, but a lot of tips and tricks are
available for this.

4.3.1.2.1. Search unattended.sourceforge.net and others

Before you start to integrate a new package, you'd better first have a look at
unattended.sourceforge.net whether somebody already did that job:

http://unattended.sourceforge.net/installers.php

http://www.german-nlite.de/index.php?act=module&module=pages&pg=schalterse

There you also can find a lot of hints and switches for most of the current setup
programs. And on unattended.sourceforge.net (or uib.de) you can provide your solution
other users.

For many software components you will find packages on sourceforge.

For examples have a look at the 'unattended wiki':
http://ubertechnique.com/unattended/Scripts

46

http://ubertechnique.com/unattended/Scripts
http://uib.de/
http://unattended.sourceforge.net/installers.php
http://www.german-nlite.de/index.php?act=module&module=pages&pg=schalterse
http://unattended.sourceforge.net/installers.php

4. Localboot products: automatic software distribution with opsi

or cvs.souceforge.net:
http://cvs.sourceforge.net/viewcvs.py/unattended/unattended/install/scripts/

Here for example is described how to install an exe as "msi-packet" or "silent". You can
easily transform this into a 'Winbatch' statement.

It also might be helpful to have a look at:

http://www.appdeploy.com/packages/browse.asp?cat=all

http://www.german-nlite.de/index.php?autocom=custom&page=ug-schaltertabelle

http://www.windows-unattended.de/component/option,com_appbase/Itemid,160/

http://www.msfn.org/board/lofiversion/index.php/f80.html

4.3.1.2.2. Search the software producers site

A lot of software manufacturers are aware of the needs of unattended software
distribution, so there often are some hints and instructions in the product documentation
or on the software producers website.

4.3.1.2.3. Search the setup tool manufacturers site

Often setup programs are not written by the software manufacturers themselves. In
most cases they deploy dedicated software products for creating setup programs. So
the command line arguments for the resulting packet often are typical for the setup
creation tool it is based on.

How to find out what setup tool has been used? Often the name of the manufacturer is
displayed in the title of the welcome window. In the following example this is
'Installshield':

47

http://www.msfn.org/board/lofiversion/index.php/f80.html
http://www.windows-unattended.de/component/option,com_appbase/Itemid,160/
http://www.german-nlite.de/index.php?autocom=custom&page=ug-schaltertabelle
http://www.appdeploy.com/packages/browse.asp?cat=all
http://cvs.sourceforge.net/viewcvs.py/unattended/unattended/install/scripts/

4. Localboot products: automatic software distribution with opsi

Sometimes you find some information in the 'About Setup':

Another source of information is the file version info. You can get this from the file
explorer: right mouse click on the setup program and then 'properties'.

On the website of the software manufacturer you can search by the keywords 'silent' ,
'silent Install' or 'unattended'.

48

4. Localboot products: automatic software distribution with opsi

Here are some manufacturer's links:

http://unattended.sourceforge.net

http://helpnet.installshield.com/robo/projects/InstallShieldXFAQ/FAQDeploymentSilent.htm

http://helpnet.installshield.com/robo/projects/InstallShieldXHelpLib/IHelpSetup_EXECmdLine.htm#sParam

http://helpnet.installshield.com/robo/projects/InstallShieldXHelpLib/SetupIss.htm

http://www.jrsoftware.org/isfaq.php#silent

http://nsis.sourceforge.net/

http://nsis.sourceforge.net/index.php?id=19&backPID=15&tx_faq_faq=39

http://www.wise.com/ (usually /s)

4.3.1.2.4. Installation with a logged on user

As a starting point we assume that you have done an unattended installation by using a
wInst-script. The installation works OK when started as a logged on user (with

49

http://www.wise.com/
http://nsis.sourceforge.net/index.php?id=19&backPID=15&tx_faq_faq=39
http://nsis.sourceforge.net/
http://www.jrsoftware.org/isfaq.php#silent
http://helpnet.installshield.com/robo/projects/InstallShieldXHelpLib/SetupIss.htm
http://helpnet.installshield.com/robo/projects/InstallShieldXHelpLib/IHelpSetup_EXECmdLine.htm#sParam
http://helpnet.installshield.com/robo/projects/InstallShieldXFAQ/FAQDeploymentSilent.htm
http://unattended.sourceforge.net/

4. Localboot products: automatic software distribution with opsi

administrative privileges).
But when started from within the software deployment (preloginloader) it fails . A
possible reason for that difference might be that the installation process requires an
user environment or profile.

In case of a MSI package the option ALLUSERS=2 might help.
Example:
[Aktionen]
DefVar $LOG_LOCATION$
Set $LOG_LOCATION$ = "c:\tmp\myproduct.log"
winbatch_install_myproduct
[winbatch_install_myproduct]
msiexec /qb ALLUSERS=2 /l* $LOG_LOCATION$ /i %SCRIPTPATH%\files\myproduct.msi

Another more complex way to solve the problem is to create a temporary administrative
user account and use this for the program installation. For a detailed description how to
do this please refer to the wInst-handbook chapter 8.3 'Script for installation in the
context of a local administrator'.

4.3.1.3. Work with MSI-packages

With Windows 2000 Microsoft launched its own installation concept based on the
Microsoft Installer Service „MSI“. In the meantime many setup programs are MSI
compliant.

To be MSI compliant means to provide a packet with install instructions for the MSI.
Usually this is a file named 'product.msi'.

In practice the „setup.exe“ of a product contains a 'product.msi' file and an additional
control program for the installation. The control program unpacks the 'product.msi' and
pops up a window to ask for the installation's start. If this has been approved the control
program checks whether MSI is installed and passes 'product.msi' over. If there is no
suitable MSI, the control program first starts the installation of the MSI.

When you interrupt the installation at that point, you often find the unpacked MSI-
package in a temporary directory.

50

4. Localboot products: automatic software distribution with opsi

This package can be used for unattended installation for instance with the statement:

msiexec /qb-! ALLUSERS=2 /i Product.msi
or
msiexec /i Product.msi /qn

Some more particular arguments can be supplied. An overview on the command line
arguments of “msiexec.exe” provides:

http://helpnet.installshield.com/robo/projects/InstallShieldXHelpLib/IHelpCmdLineMSI.htm

For more information on MSI have a look at:

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/de/library/ServerHelp/9361d377-9011-4

e21-8011-db371fa220ba.mspx

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

http://www.microsoft.com/windows2000/techinfo/howitworks/management/installer.asp

http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/featusability/winmsi.mspx

4.3.1.4. Customizing after a silent/unattended installation

After a successful silent installation some more customizing might be useful. The 'opsi
Winst' is a powerful tool to do that job. At first you will have to find out what patches
have to be applied. For example that could mean to analyze what registry settings are
affected by the GUI customizing tools.

You can use the tools portrayed in chapter 'Analyze and repackage' further down. Some
more tools can be found here:

http://www.sysinternals.com/

http://www.german-nlite.de/files/guides/regshot/regshot.html

51

http://www.german-nlite.de/files/guides/regshot/regshot.html
http://www.german-nlite.de/files/guides/regshot/regshot.html
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/featusability/winmsi.mspx
http://www.microsoft.com/windows2000/techinfo/howitworks/management/installer.asp
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/de/library/ServerHelp/9361d377-9011-4e21-8011-db371fa220ba.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/de/library/ServerHelp/9361d377-9011-4e21-8011-db371fa220ba.mspx
http://helpnet.installshield.com/robo/projects/InstallShieldXHelpLib/IHelpCmdLineMSI.htm

4. Localboot products: automatic software distribution with opsi

4.3.1.5. Integration with automated answers for the setup program

Another fast way of integration is to provide an automated answer file for the setup
process. To be more precise, the answer file is used by a control tool, which waits for
the setup to come up with interactive windows and then passes input to these windows
as defined in the answer file. As a control tool we recommend 'AutoIt'. The AutoIt
program and the documentation you will find in the opsi-integtools or at the website:
http://www.hiddensoft.com/autoit3.

Here is a (very simple) example for using AutoIt:

Automated integration of 'TightVNC' with the help of AutoIt.
; start the setup
Run, tightvnc-1.2.9-setup.exe
; wait for the first window titled „Setup - TightVNC“
WinWait, Setup - TightVNC
; Send „Enter“ to that window:
Send, {ENTER}
; and so on ... send ENTER for default processing:
WinWait, Setup - TightVNC
Send, {ENTER}
WinWait, Setup - TightVNC
Send, {ENTER}
WinWait, Setup - TightVNC
Send, {ENTER}
WinWait, Setup - TightVNC
Send, {ENTER}
WinWait, Setup - TightVNC
Send, {ENTER}
WinWait, Setup - TightVNC
Send, {ENTER}
; at that point the installation has started
WinWait, Setup - TightVNC
; send F for Finish
Send, F
exit

At the start of 'autoit.exe' the name of the control file is passed as an argument.

Following screen shots correspond with the answer file. As you can see, sending “Enter”
to every window proceeds the default installation:

52

http://www.hiddensoft.com/autoit3/

4. Localboot products: automatic software distribution with opsi

AutoIt provides a lot of commands to control the setup process. Also several error
states can be handled (if known in advance) with the [ADLIB] section in the script.

Although there is a fundamental challenge in using AutoIt:
The AutoIt-Script must provide input for every window, that might pop up during
installation. So if any unexpected window pops up, which isn't handled in the [ADLIB]
section, AutoIt provides no input for this window and the installation stops at that point
waiting for input. This input could be done by an interactive user and then the script can
take over again and handles the next well known windows.

There is another critical path of an AutoIt-Installation:
The user can interfere with the installation if the mouse and keyboard are not disabled.
Therefore we regard 'unattended' or 'silent' setup as a more stable solution.

A combination of both might do a good job:
The 'silent'-setup does the main installation and the AutoIt-script handles special
conditions that might occur.

53

4. Localboot products: automatic software distribution with opsi

54

4. Localboot products: automatic software distribution with opsi

Example: wInst-script for installation of 'TightVNC'
[Initial]
Message=install tightvnc 1.2.9
[Action]
; start AutoIt as background process to absorb message windows,
; which appear during the tightvnc installation run as service
winbatch_tightvnc_autoit_confirm /LetThemGo
; start the setup as a silent setup
winbatch_tightvnc_silent_install
[winbatch_tightvnc_autoit_confirm]
%SCRIPTPATH%\autoit %SCRIPTPATH%\confirm.aut
[winbatch_tightvnc_silent_install]
%SCRIPTPATH%\tightvnc-1.2.9-setup.exe /silent

4.3.1.6. Analyze and repackage

When a software developer builds a setup for deployment, he usually knows about the
required components of the software that have to be installed. But if somebody just has
got the setup as a black box, he first needs to analyze what the setup does. This can be
done by monitoring the setup activities with appropriate tools (e.g. monitoring any file
and registry access) or by comparing the system states before and after installation.

To analyze the before / after states, Microsoft provides the utility sysdiff for Windows
NT and Windows 2000. This program can perform a system snapshot before and after
the setup process. Also it comes up with options to compare both states, lists and
collects the differing components and even builds a simple installation script from that.
Such a script could be the base for a reproduction of the original installation.

But the sysdiff installation routines and packages aren't compatible with the new MSI-
standard. Probably due to this reason sysdiff is no longer supported for Windows XP.
As a replacement for this Microsoft server edition comes with a tool for packaging of
MSI-packages – the product WinINSTALL LE from the company OnDemand.

WinINSTALL LE used to be available as freeware. In the meantime just a trial version
can be obtained from:

http://www.ondemandsoftware.com

55

http://www.ondemandsoftware.com/

4. Localboot products: automatic software distribution with opsi

On Windows XP WinINSTALL LE basically does the same as sysdiff does on Windows
NT / 2000. A system snapshot before and after a test installation leads to building a MSI
package containing all the differences. This package should be valid for installation with
the Microsoft Installer.

Microsoft also provides the tool Orca to inspect MSI packages. Basically (if the job
wasn't too complex) Orca can edit and create MSI packages and also checks existing
MSI packages for integrity. Orca is part of the platform SDK for Windows Server 2003,
which can be obtained from:

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

Another interesting free tool for creation of MSI packages is the program Installer2GO
from the company Dev4PC. Here comes the link:

http://dev4pc.com

In the following you will get some tips for working with WinINSTALL LE and Orca.

4.3.1.6.1. Hints for execution of WinINSTALL LE

At first WinINSTALL LE has to be installed on a server running the same operating
system as the target client, usually Windows XP.

For a test installation of the software to be analyzed, you need a recently installed target
client with only the required software components installed – usually just the system
software including updates.

During installation of WinINSTALL LE on the server, the setup programm asks for a file
share to save the installation packets to and creates the share if it doesn't already exist.

The procedure of analysis and creating the MSI package will be started from the target
client side. First connect to the server share and start the discover program
('disco32.exe'). It will guide you through the further steps.

The first step is to name the application, e.g. “program 1.0” and configure the path for
the package. Every package should have its own folder.

56

http://dev4pc.com/
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

4. Localboot products: automatic software distribution with opsi

The discover program prepares the snapshot of the original system state. Therefore it
will ask you what drives should be scanned during snapshot. Normally only the system
and program files drive (C:\) has to be monitored, for setup programs usually do not
touch other drives.

Furthermore the discover program presents a list of subdirectories, registry sections and
configuration files to be excluded from the analysis, for they are e.g. temporary files or
contain no relevant information. The list can be edited, however you better use the
default setting if there is no good reason for a change and you don't have enough
background knowledge.

Then the capture of the actual system state (first snapshot) can be started.

The accomplishment of the first snapshot needs some time, and when done, the
discover program sends a message to start the original setup of the application:

57

4. Localboot products: automatic software distribution with opsi

Sometimes a setup program wants to perform a reboot after installation. You will have
to decide case by case whether to do so or not. Microsoft makes no explicit statement
how to handle this. When the setup is done, 'disco32.exe' can be started again to take
the second snapshot and analyze the differences between the two snapshots. Then it
creates a MSI package for software distribution. This package contains everything to
reproduce the installation.

4.3.1.6.2. Orca

Microsoft outlines the functions of the program “Orca” as follows:

Because of the restrictions of existing tools for the Windows Installer, it might be
necessary to edit the MSI packages. To perform this task, Orca is provided by the
Windows Installer SDK.

In principle with Orca you can do a lot of jobs concerning MSI packages, but for more
complex tasks it is too difficult to handle. So Ocra is suitable mainly for performing some
small patches and customization.

Anyway Orca is a great tool to discover the internal structure of MSI packages and to
understand the basic principles of a setup information database.

After opening a MSI package with Orca a list of tables will be shown that look like
database tables. And that is what they basically are.

When you click on the table named “Files” it will look like this:

On the right side there is a list of all files required for installation. Each file has got an
unique key for identification, which is shown in the first column.

58

4. Localboot products: automatic software distribution with opsi

In a similar way registry entries and other components are managed.

Another interesting table is the special table „InstallExecuteSequence“. The column
“Sequence” holds the order of installation. Sorting the table by this column shows the
chronological order of installation steps.

4.3.1.7. Internal structure of an integrated product

According to opsi any commercial or free software will be integrated as a product (an
installable opsi product). Based on the results of the foregoing software analysis, the
opsi product contains all the files for installation and a special install script which will be
executed by the opsi installer wInst.

59

4. Localboot products: automatic software distribution with opsi

4.3.1.7.1. Tasks of the opsi installer wInst (for Windows)

In addition to the Windows installer (MSI) or other commercial installers, the opsi
installer wInst has to perform following tasks:

• The opsi installer wInst provides seamless integration with the opsi configuration
data base, which holds the specifications for the product installation.

• Based on wInst the installation becomes configurable, customizable and adaptable
down to any detail as required for the overall concept.

• wInst features detailed logging of all software installation steps which can be very
useful for integration and support. The log level can be set gradually from verbose log
down to none.

4.3.1.7.2. General hints for writing a Winst-script

4.3.1.7.2.1. What if the installation needs a reboot

Many software components installed by a setup program require a reboot after
installation. The reason for this is that performing a reboot often is the only way to make
sure, that new configurations and replaced modules come into operation.

So opsi wInst comes with a script command for performing a reboot. In the [action]
section of the wInst-script the command ExitWindows can be set and specified with
the option /RebootWanted, /Reboot or /ImmediateReboot:

• /RebootWanted (deprecated) is the “weakest” reboot option. The reboot request is
noted down in the registry and will be performed after all the installations are done.
Which means that wInst might continue installing other products before rebooting.
So reboot requests from many packets can be combined in a final single reboot,
instead of rebooting after each packet.

• /Reboot launches a reboot after completing the current installation script.

• /ImmediateReboot aborts the script execution and performs an immediate reboot.
The script itself has to take care for status handling and proper continuation. To
control script processing, the script might write a status flag before reboot. After

60

4. Localboot products: automatic software distribution with opsi

reboot the first task is to evaluate the status flag and continue with the next part of
the installation process. The flag handling might look like this:

Set $WinstRegKey = "HKLM\SOFTWARE\opsi\winst"
Set $RebootFlag = GetRegistryStringValue ("[" + $WinstRegKey + "] " +
"RebootFlag")
if not ($RebootFlag = "1")
 ;=========================
 ;
 ; instructions before reboot ...
 ; ... any actions to perform before reboot
 Set $RebootFlag = "1"
 Registry_SaveRebootFlag
 ExitWindows /ImmediateReboot
else
 ;=========================
 ;
 ; instructions after reboot ...
 ; set back rebootflag
 Set $RebootFlag = "0"
 Registry_SaveRebootFlag
 ; ... any actions to perform after reboot
endif

In addition there is a wInst section required for handling the status flag:
[Actions]
[Registry_SaveRebootFlag]
openKey [$WinstRegKey]
set "RebootFlag" = "$RebootFlag"

4.3.1.7.2.2. Files copy

The available copy commands are described in the wInst handbook.

4.3.1.7.2.3. Start menu entries

In the wInst script the start menu entries can be set by a link folder section and the
following request:
[LinkFolder_adminutils]
set_basefolder common_programs
set_subfolder "Admin Utils"
set_link
 name: Ini-Editor
 target: javaw.exe
 parameters: -jar %ProgramFilesDir%\opsi.org\inied\inied.jar
 working_dir: $TEMP$

61

4. Localboot products: automatic software distribution with opsi

 icon_file: %ProgramFilesDir%\opsi.org\inied\config_prog.ico
 icon_index: 0
end_link
set_link
 name: WinMerge
 target: %ProgramFilesDir%\WinMerge\WinMerge.exe
 parameters:
 working_dir: $TEMP$
 icon_file: %ProgramFilesDir%\WinMerge\WinMerge.exe
 icon_index: 0
end_link

4.3.1.7.2.4. System software dependencies

At first in the wInst script you have to declare for which system software (or groups of
system software) the script is valid. At any point the script can detect the current OS
and perform different tasks according to the OS.

In the [action] section of the wInst script the system software can be detected by calling
the function GetOS. The return value of GetOS is one of the following:
"Windows_16"
"Windows_95"
"Windows_NT"
- return value = “Windows_95” for Win95, Win98 and WinME
- return value = “Windows_NT” for Windows NT 4.0, Windows 2000 and Windows XP

If the return value is “Windows_NT”, the minor version can be retrieved by calling the
function GetNTVersion. One of the following values will be returned:
"NT4"
"Win2k"
"WinXP"
"Win NT 5.2" (e.g. Windows Server 2003 R2 Enterprise Edition)

A single script can handle different operating systems by using 'if' statements:

DefVar OS
set OS = GetOS
DefVar $MinorOS$
set $MinorOS$ = GetNTVersion

; ... perform any tasks for all of the Windows versions

62

4. Localboot products: automatic software distribution with opsi

; case switches
if $OS = "Windows_NT"

if $MinorOS$ = "NT4"
; ... tasks to perform for WinNT only

else
; ... tasks to perform for Win2000/XP

endif
else
 ; tasks for Win95 family
endif

If a script is valid only for the Windows_NT family (Windows NT, Windows 2000 or
Windows XP), the following statement prevents from performing the installation on any
other OS:
if GetOS = "Windows_NT"
; ... if OS=Windows then perform the tasks
endif
; perform no tasks for other OS

4.3.1.7.2.5. Options in the wInst script

For some products it might be useful to provide several installation options. So the
Internet Explorer packet might be installed only to perform a system software update.
But on some PCs also the browser functionality of the Internet Explorer should be
installed. To distinct several installation options, a switch can be set in the opsi data
base, which is specific for the opsi packet and the individual computer. Using the file
backend, the switch is set in the INI-file of the PC and can be evaluated by the function
IniVar (flag name) like this:
if IniVar ("ie6_exe") = "on"
 Files_CopyC_hiddenexefiles
 Registry "%SCRIPTPATH%\hiddenexe.rgm"
 Registry "%SCRIPTPATH%\hiddenexe.rgu" /AllNTUserDats
endif

So if the flag “ie6_exe”=”on”, all files will be copied and registry entries will be set for
installing IE as a browser.

The number of switches for any packet is not limited. So for instance this virscan
package comes with three different switches:
[virscan-install]
....

63

4. Localboot products: automatic software distribution with opsi

WriteScan=on
NetworkScan=on
Reinst451=on

It is up to the script how to handle different switch settings. In this case some script
variables are set according to the switches, which are used for patching the
configuration file 'vsconfig.ini' later on:
; patch configuration files and import them
....
if IniVar ("ReadScan") = "off"
 Set $ReadScan="0"
else
 Set $ReadScan="1"
endif
if IniVar ("WriteScan") = "off"
 Set $WriteScan="0"
else
 Set $WriteScan="1"
endif
if IniVar ("NetworkScan") = "off"
 Set $NetworkScan="0"
else
 Set $NetworkScan="1"
endif
....

4.3.1.8. How to deinstall products

To deinstall a software product from a computer, you need an 'uninstall' script to
perform the deletion. The fundamental difficulty in software deletion is to distinguish
what exactly has to be removed. Not all of the files that came with a software package
can be deleted afterwards. Sometimes a packet comes with standard modules, which
are also referred to by other programs. Often only the software manufacturer himself
knows what parts have to be removed. The manufacturer's setup might offer an
unattended deinstall option which can be embedded in the opsi deinstall script.
Otherwise wInst provides several commands for software deletion:

4.3.1.8.1. Using an uninstall routine

If the product manufacturer provides an option for software deletion, it has to be
checked whether it can be run unattended (in silent mode). If it requires some user

64

4. Localboot products: automatic software distribution with opsi

interaction, an autoIt-script combined with the uninstall routine might do the job. The
uninstall statement can be embedded in a [winbatch] section of the wInst-script:
[Winbatch_start_ThunderbirdUninstall]
%SYSTEMROOT%\UninstallThunderbird.exe /ma

When using an uninstall program, it always should be tested whether all of the files
have been deleted and the computer is still in a stable state.

Products which are installed by MSI often come also with an uninstall option, which
usually is the msiexec.exe parameter /x. And the parameter /qb-! is for
unattended mode (without user interaction). So this is the statement for unattended
deinstall:
msiexec.exe /x myPacket.msi /qb-!

Instead of the package name you could also use the GUID (Global Unique ID) with
msiexec.exe. This GUID identifies the product in the system and can be found in the
registry directory
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall

A request using the GUID looks like this:
msiexec.exe /x {003C5074-EB37-4A75-AC4B-F5394E08B4DD} /qb-!

If none of these methods is available or sufficient, the deinstallation can be done by a
wInst-script as described in the following:

4.3.1.8.2. Useful wInst commands for uninstall

If a product has been installed by wInst functions, or if there is no uninstall routine for
the product, the complete deinstallation has to be done by a wInst script. WInst comes
with some powerful uninstall functions. In this chapter we will have an overview, for
detailed information refer to the wInst handbook.

65

4. Localboot products: automatic software distribution with opsi

The base of deletion is deleting one or more files from the file system. This command
can be executed from a wInst files section:
delete -f filename

or to delete a directory including sub directories:
delete -sf dirname
The parameter 'f' means 'force' – to delete the files anyway, even if they are marked as
'read only' – and the parameter 's' means including the 'subdirectories'. A file or
directory can be deleted from all user profiles by using the option '/AllNTUserProfiles'
(see wInst-handbook for details).

Directories containing files with the attribute 'hidden' or 'system' can be deleted by using
a 'DosInAnIcon'-section:
[DosInAnIcon_deleteDir]
rmdir /S /Q “<dirname>“

To stop a running process before deletion use the killtask command with the process'
name (look at the task manager for process name):
killtask “thunderbird.exe“

If the product – or part of it – runs as a service, you will have to stop the service before
deleting the files. One way to do so, is to set the service to state “inactive“ in the registry
and restart the computer. Or to stop the service by using the command 'net stop',
which doesn't need a reboot:
net stop <service name>

Also deleting DLL files requires special attention, since DLLs could also be used by
other products. There is no general concept for handling this.

To delete registry entries with the wInst you can use the command DeleteVar. This
command deletes entries from the currently open key:
DeleteVar <VarName>

66

4. Localboot products: automatic software distribution with opsi

To delete a registry key with all sub keys and registry variables, you can use the wInst
command DeleteKey:
DeleteKey [HKLM\Software\Macromedia]

4.3.2. Creating an opsi package

opsi has a package format which contains the installation files, the opsi wInst installation
script and meta data.

The essential advantages of this format are:

● Simplified menu driven handling with the program 'opsi-newprod'.

● Holding all meta data in one file which is easy to edit.

● Optional menu driven install of the package with optional default overriding.

● Information about the package including product version, package version and
customer extensions will be saved. The package information is stored in the
installation directory and are to be seen in the package name and the opsi-
configeditor. In this way different package versions can be handled easily
(product life cycle management).

● For creating and unpacking products no root privileges are required. Privileges of
the group 'pcpatch' are sufficient.

The packet itself is merely a Gzip compressed cpio archive. This archive includes three
directories:

CLIENT_DATA

holds the files which are to be copied into the product directory
(/opt/pcbin/install/<productid>).

SERVER_DATA

Holds directories which will be unpacked to /. Root privileges for unpacking might be
required.

67

4. Localboot products: automatic software distribution with opsi

OPSI

The file named 'control' holds the product meta data (like the product dependencies).
The files 'preinst' and 'postinst' will be executed before and after the installation. Any
customer extensions might be added here.

4.3.2.1. Create, pack and unpack a new product

The privileges of the group 'pcpatch' are required to create a new product.

In this example the product will be created in the directory '/home/opsiproducts'. The
group 'pcpatch' has to be owner of the directory and the directory permissions are 2770
('set group ID' bit is set for group pcpatch).

Attention: Do not use any country-specific symbols (umlaut), since the actual
country code might vary for different code tables.

Change directory to the product directory and start the creation of the new product with
'newprod'. The next question is for the type of product to create. Choose type
'localboot' for products which should be installable by preloginloader/wInst. Product type
'netboot' is used for products which are activated as a bootimage (like hardware
inventory) and type 'server' is used for products that are just installed on a server.

68

Figure 12: Choose the product type: localboot

4. Localboot products: automatic software distribution with opsi

Confirm your choice with tab (or F12). Next fill in the basic product parameters. At the
top of the window is an explanation for the current input field.

● 'Product id' is a distinct short name for the product, independent from the product
version (in opsi V2 this has been the product name)

● 'Product name' is the full name of the product

● 'Description' is an additional description of the product.

● 'Advice' is some additional information how to handle the product (a note).

● 'Product version' is the version of the packed software.

● 'Package Version' is the version of the package for the product version. This
helps to differ packages with the same product version but with for instance a
modified wInst script.

● 'Priority' is for future use (regarding the installation order).

● 'Product class names' is for future use.

69

Figure13: Input of the product information

4. Localboot products: automatic software distribution with opsi

After the product information is completed, fill in which action scripts should be
provided:

Usually the 'Setup script' is named <productId>.ins.

The next step is to define one or more product dependencies. If there are no product
dependencies put in 'No'.

To create a product dependency put in the following data (help is available at the top of
the window):

70

Figure14: Input of the wInst script names for different actions

4. Localboot products: automatic software distribution with opsi

'Dependency for action' : For which product action shall the dependency be created
(setup, deinstall,...)

71

Figure 15: Create product dependency: No/Yes

Figure 16: Data input to create a product dependency

4. Localboot products: automatic software distribution with opsi

● 'Required product id': Product id of the required product

'Required product class id': For future use, leave it empty!

● 'Required action': Select the required action (if any) for the required product.
Actions can be as 'setup', 'deinstall', 'update'. If no 'required action' is set, a
'required installation status' must be set

● 'Required installation status': Select the required status of the required product (if
any). Usually this is 'installed'. So the required product will be installed if it isn't
installed on the client yet. If no 'required installation status' is set, a 'required
action' must be set

● 'Requirement type': This is regarding the installation order. If the required product
has to be installed before the installation of the actual product, this is set to
'before'. If it has to be installed after the actual product, set 'requirement type' to
'after'. Leave it blank if the installation order doesn't matter.

Notice: The possibiliy to define deinstall actions or dependecies is broken.

After defining a product dependency you will be asked whether to create another
product dependency. If you choose 'Yes', the procedure for defining a product
dependency is repeated; if you choose 'No' you will be asked to define some product
properties, which means defining additional switches for product customization.

If you answer 'Yes' you will have to describe the product properties.

72

4. Localboot products: automatic software distribution with opsi

The product properties are client specific and are a name (key) which can hold different
values. These values can be evaluated by the wInst-script and result in installing

73

Figure 17: A(nother) product property to create?

Figure 18: Description of the product properties

4. Localboot products: automatic software distribution with opsi

different options at installation time. Further on a description for the switch hneeds to be
specified, which will be shown in the opsi-configeditor as a help text and also when the
package is unpacked. Next you can define the set of values for the switch (separated by
comma). If this is left blank, any value is allowed for the switch.

In the following you can define the default value of the product property (switch).

After defining a product property, you will be asked whether to create another product
property. If you choose 'Yes' the procedure of defining a property repeats; if you choose
'No', the basic definitions for the new product are done.

Using the list command (ls) you can see the directory structure as described above.
Change to the OPSI folder and list the content. The 'control' file now contains the data
you just have defined and you can load the file into an editor to view or change the
entries.

Example of a 'control' file:
[Product]
type: localboot
id: javavm
name: Sun Java Runtime Environment
description:
Mehrere Versionen: 1.3, 1.4, 1.5, 1.6
advice: Additional choice switch for different versions
version: 1.6.0.0
packageVersion: 1
priority: 0

74

Figure 19: Default value of the product property

4. Localboot products: automatic software distribution with opsi

licenseRequired: True
productClasses: jre
setupScript: javavm.ins
uninstallScript:
updateScript:
alwaysScript:
onceScript:
[ProductDependency]
action: setup
requiredProduct: mshotfix
requiredStatus: installed
requirementType: before
[ProductProperty]
name: default13
description: on=Version 1.3 are default JRE; off=The actual installed Javavm
are the default JRE
values: on, off
default: off
[ProductProperty]
name: javavm15
description: Should Javavm 1.5 be installed
values: on, off
default: on
[ProductProperty]
name: javavm16
description: Should Javavm 1.6 be installed
values: on, off
default: off

As the next step you will have to copy the product wInst-script and the necessary data
files into the CLIENT_DATA folder.

Then you can pack the package. Change to the root directory of the product and start
'makeproductfile'. The product will be packed.

'makeproductfile' can be started with different options:
opsi-makeproductfile --help
Usage: opsi-makeproductfile [-h] [-v|-s] [-f] [-F format] [-l log-level] [-i|-
c custom name] [-I required version] [-t temp dir] [source directory]
Provides an opsi package from a package source directory.
If no source directory is supplied, the current directory will be used.
Options:
 -v verbose
 -s silent
 -l log-level 0..6
 -f fast, no topicality test

75

4. Localboot products: automatic software distribution with opsi

 -n do not compress
 -F archive format [tar|cpio], default: cpio
 -h follow symlinks
 -I incremental package
 -i custom name (add custom files)
 -c custom name (custom only)
 -t temp dir

The packet then can be installed on any opsi server with the command
'opsiinst <packet name>'.

Also 'opsiinst' has some optional parameters:
opsiinst -h
Usage: opsiinst [options] <opsi package>
Install an opsi package.
Options:
 -v show version information
 -h this help text
 -q quiet, don't ask any questions
 -f force installation
 -d enable debug mode
 -l <log-file> use a file for logging
 -i <interface> user interface [snack|text]

Without additional parameters 'opsiinst' will start in interactive modus, so you can e.g.
modify the default product properties for your server. If you would like to install a
product without any questions, start 'opsiinst' with the options '-q -f'.

4.3.2.2. Create client specific opsi packages

Sometimes a product needs to have different installation options for different servers,
maybe regarding the license agreement or because of different customization options.
To handle this, you will have to save the specific data files in separate subdirectories
before packing the package. When packing, the -i option makeproductfile -i
selects which of the custom subdirectories will be included into the packet.

Example:
The product 'softprod' shall be created in three versions. There is a base version and
two other versions with additional software, one for 'CompanyX' and the other for
'CustomerY'. Therefore in the directory '/home/opsiproduct/softprod/'

76

4. Localboot products: automatic software distribution with opsi

we create the folders 'CLIENT_DATA.CompanyX' and 'CLIENT_DATA.CustomerY'.
In both the new directories you create another folder 'custom_ins_dir' which
contains the additional software of the respective version. Later on, when installing the
package on a server, the custom folder 'custom_ins_dir' will become a direct
subdirectory of the main product folder:

/home/opsiproduct/softprod/custom_ins_dir

It is also possible to create another wInst-script in this directory, which can be called
from the actual setup wInst-script during client installation. The custom wInst-script can
be started from the main wInst-script like this:
if FileExists("%ScriptPath%\custom_ins_dir\custom.ins")
 sub "%ScriptPath%\custom_ins_dir\custom.ins"
endif

To pack the product package you will have to change to the base product directory
'/home/opsiproduct/softprod/'. Then pack the product for 'CompanyX' by calling
'makeproductfile -i CompanyX'. Use the same name as the corresponding
CLIENT_DATA-directory !
So: CLIENT_DATA.<custom name> => makeproductfile -i <custom name>.
The request for packing the package for 'CustomerY' is done similar:
'makeproductfile -i CustomerY'

The base version of the package (without any custom extension) will be packed by just
calling 'makeproductfile' without -i parameter.

The custom package
softprod.<product version>-<packet version>_<custom name>.opsi
can be distributed and installed like any other packet.

77

5. Netboot products: Automated OS installation and more

5. Netboot products: Automated OS installation and more

5.1. Unattended automated OS installation

5.1.1. Overview

Steps of a re-installation:

• Using PXE-Boot:

• Choose the client which has to be installed with the utility opsi-configed or opsi-

admin.

• At the next reboot, the client detects (via PXE-Bootprom) the re-installation request

and loads the boot image from the opsi depot server.

• Using CD-Boot:

• The client boots the boot image from the opsi-bootcd.

• The boot image starts and asks for confirmation to proceed with the re-installation.

This is the only interactive question. After confirming this, the installation proceeds

without any further request for interaction.

• The boot image partitions and formats the hard disk.

• The boot image copies the required installation files and configuration information

from the depot server to the client and initiates a reboot.

• After the reboot the client installs the OS according to the provided configuration

information without any interaction.

• Next the opsi PreLoginLoader is installed as the opsi installer for automated software

distribution.

78

5. Netboot products: Automated OS installation and more

• The automated software distribution then installs all the software packages as

defined in the client's configuration.

5.1.2. Preconditions

First of all an opsi depot server has to be installed.

The client PC has to be equipped with a bootable network controller. Most recent

network controllers provide this functionality (PXE boot), also recent network controllers

which are integrated on the PC's main board. The PXE software, which is stored in the

'bootprom' of the network controller, controls the boot process via network according to

the BIOS boot device sequence. Usually the boot sequence has to be set in the BIOS,

'network-boot' has to be the first boot device.

On request also the support of 'bootp' bootproms is available.

The opsi installation package for the OS to be installed needs to be provided on the

depot server. In the following we assume Windows 2000 to be the OS to install.

5.1.3. PC-client boots via the network

The PXE firmware gets activated at startup of the PC. Part of the PXE implementation

is a DHCP client.

79

Figure 20: Step 1 during PXE-Boot

PXE-Bootprom
becomes active

PC now knows:
- it's IP
- the server
- Gateway and netmask
- bootfilename

from

/etc/hosts +
/etc/dhcp3/dhcpd.conf

Depot-Server

dhcpdiscover

PC/Client

dhcpoffer

dhcpack

dhcprequest

5. Netboot products: Automated OS installation and more

At first the PC only knows its hardware ethernet address (MAC), consisting of six two-

digit HEX characters.

The firmware initiates a DHCPDISCOVER broadcast: “I need an IP address, who is my
DHCP-Server?“

The DHCP-Server offers an address (DHCPOFFER).

DHCPREQUEST is the response of the client to the server if the IP address is
accepted. (This is not an obsolete step as there could be more than one server in the
network.)

The server sends a DHCPACK to acknowledge the request. The information is sent to
the client again.

You can watch this process on the display, for the PXE-BOOTPROM displays some
firmware information and its 'CLIENT MAC ADDR'. The rotating pipe-symbol is
displayed during the request. When an offer was made it is replaced by an '\' and you
get the transmitted information (CLIENT IP, MASK, DHCP IP, GATEWAY IP).
A short while later you should get a response like this: 'My IP ADDRESS SEEMS TO
BE'.

This process makes the PC a regular, fully configured member of the network.

The next step is to load the boot file (boot image) given in the configuration information.

5.1.3.1. Loading pxelinux

The boot image is loaded via trivial file transfer protocol (tftp). The displayed message is

„LOADING“. tftp is a rather old and simple protocol to transfer files without

authentication. In fact, all data available via tftp is available to everyone in the network.

Therefore the tftp access is limited to one directory, which is usually '/tftpboot'. This

directory is specified in inetd (internet daemon, /etc/inetd.conf), which will start the tftp

daemon 'tftpd' if requested. The start command as noted in inetd.conf is something like

 tftpd -p -u tftp -s /tftpboot.

The PXE boot-process is multi-stage:

80

5. Netboot products: Automated OS installation and more

Stage 1 is to load and start the file submitted as part of the address discovery process

(usually /tftpboot/linux/pxelinux.0).

The program 'pxelinux.0' then looks for configuration and boot information in

'/tftpboot/linux/pxelinux.cfg'. It first looks for a PC specific file with a name based on the

hardware ethernet address (MAC) of the network controller with a leading 01. The

filename for the controller with the hardware ethernet address 00:0C:29:11:6B:D2 would

be 01-00-0c-29-11-6b-d2. If the file is not found, 'pxelinux.0' will start to shorten the

filename (starting at the end) to obtain a match. If this process ends without result, the

file 'default' will be loaded. This file only contains the instruction to boot from the local

hard disk. In this case the PC won't install anything and will just start the current OS

from hard disk.

To initiate the re-installation of a certain PC, a loadable file is prepared for the program

'pxelinux.0'. In order to do so, the opsi reInstallationsManager creates a PC custom file

in '/tftpboot/linux/pxelinux.cfg'. Part of this file is the command to load the installation

boot image. Also this file contains the client key to decrypt the pcpatch-password. This

file is created as a 'named pipe' and therefore disappears after being read once. More

details about this in the chapter on security of file shares.

81

Figure 21: Step 2 PXE-Boot

PC knows IP, Server,
boot-bfilename ...

BootImage will be loaded

/tftpboot/linux/pxelinux.0

searching in:
/tftpboot/linux/pxelinux.cfg

→01-file

depotserver

TFTP-requests a
bootfile

PC/Client

5. Netboot products: Automated OS installation and more

Based on the information the 'pxelinux.0' got from the 'named pipe', the actual
bootimage is loaded from the opsi depot server via tftp. The bootimage is based on a
linux kernel (/tftpboot/linux/install) within an appropriate initrd file system (/tftpboot/linux/
miniroot.gz) and has a size of approximately 40MB.

5.1.4. Boot from CD

Similar to the tftp boot via PXE-bootprom, the installation boot image can be booted
from the opsi bootcd.

This might be recommended under the following conditions:

• the client has no PXE bootprom;

• there is no dhcp;

• there is a dhcp but it isn't allowed to configure any client data and the hardware
addresses of the clients are unknown;

• there is a dhcp but it isn't configured for this demand.

According to different situations, several information has to be provided for the CD boot
image by interactive input. The most simple case is to provide no further information.
Eventually the clients hostname can be passed by hn=<hostname>. Using the option
ASK_CONF=1 several parameters can be queried. Pressing F1 at the CD prompt
shows the syntax.

5.1.5. The linux bootimage prepares for reinstallation

The bootimage again performs a dhcp request and configures the network interface

according to the perceived information. Afterwards the configuration data for the client

will be loaded via opsi-webservice.

The configuration data provides the information about the server in charge, the file

share and the name of the installation script.

82

5. Netboot products: Automated OS installation and more

It also holds the information on how to partition the hard disk, what file system to use

and which operating system to install. Also it provides the encrypted password to

connect the file share.

These informations will be combined with some information taken from the dhcp

response and then be passed to the installation script for further processing.

Then the password for the user 'pcpatch' will be decrypted with the transferred key to

mount the installation share and then call the installation script from the mounted share

to start the installation of the operating system. What specific operations the script

performs depends on the operating system which is to be installed. Below the steps of a

Windows XP installation will be described.

Prepare the disc: On the hard disk the bootimage creates a new partition (of size 6

GB), formats it and installs a bootable ntloader kernel.

83

Figur 22: PXE-Boot loaded with bootimage preparing hard disk for operating system
installation

BootImage

Disk will be partitionied,
formated and made bootableopsiconfd

depotserver

dhcp-request

PC/Client

File for operating system
installation will be copy on
the disk and setup control
will be create

Installation directory
(/opt/pcbin/install/winxppro)

 Reboot start the automatic
operating system
installation

opsi-webservice-request
for configuration data

copy

dhcp server provides
net configuration

and tftpserver

Bootimage mount with
configuration information
the installation directory
and start the
installation script

mount

copy

5. Netboot products: Automated OS installation and more

Copy the installation file: The files required for OS installation and the setup files for

the opsi-PreLoginLoader (which is the opsi software distribution pack) will be copied

from the server file share (e.g. /opt/pcbin/install/winxppro/i386) to the local hard disk.

Maintain the configuration informations: Some of the configuration and control files

contain replacement characters, which will be patched before starting the actual

installation. With a specified script (patcha-script) the placeholders will be replaced with

parameters taken from the information packet, which is built from configuration files and

the dhcp-response. For example the file 'unattend.txt', which is the control file for

unattended OS Installation, will be patched with specific information like host IP, client

IP, client name, workgroup, default gateway etc..

Prepare Reboot: Bootrecords will be installed which will start the Windows setup

program at the next reboot. The patched 'unattend.txt' is passed to the setup as the

control file for unattended installation.

Reboot: During the previous boot, the named pipe (which is indicating a request for

installation) has been removed by reading it once. So the next PXE boot will load the

84

Figure 23: After preparation of the bootimage the computer starts from local disk and
installs the operating system and the opsi-PreLoginLoader

PC reboot

PC boot local

/tftpboot/linux
/pxelinux.cfg
/default
(Default = hdboot)

Depot-Server

dhcp-request

PC/Client

start setup-program

Last command:
Installation preloginloader

5. Netboot products: Automated OS installation and more

default netboot response, which executes the command 'hdboot'. The local boot loader

will be started and the setup for operating system installation starts.

These steps are controlled by an OS specific python script (e.g. winxp.py for the

Windows XP installation). The bootimage provides a python library (description in the

opsi-bootimage handbook).

5.1.6. Installation of OS and opsi-preLoginLoader

The OS installation is based on the Microsoft unattended setup. Part of this is the
standard hardware detection. In addition to the possibilities given during an installation
from non-OEM or slipstreamed installation media, drivers and patches (i.e. service
packs) can be installed during the initial installation, making the separate installation of
drivers obsolete.

One feature of the unattended installation is the possibility to initiate additional
installations after the main installation is finished. This mechanism is used to install the
opsi preLoginLoader, which implements the automatized software distribution system.
An entry in the registry marks the machine as being still in the 'reinstallation-mode'.

The final reboot leads to starting the opsi preLoginLoader service for software
distribution prior to the first user login. Based on the value of the aforementioned
registry key the opsi preLoginLoader switches into 'reinstallation-mode'. Therefore,
regarding the configuration status of each software packet, each packet which is
marked as action status ”setup” or installation status ”on” within the configuration of
that client will be installed. After all the designated client software has been installed,
the reinstallation process is finished and the internal status is switched back from
'reinstallation-mode' to 'standard-mode'. In 'standard-mode' only software packages that
are marked as action status ”setup” will be installed.

5.1.7. How the patcha program works

As mentioned above the information collected from dhcp and opsi-webservice will be
used to patch some configuration files as e.g. 'unattend.txt'. The program used for
patching is the script '/user/local/bin/patcha'.

85

5. Netboot products: Automated OS installation and more

This script replaces patterns like #@flagname(*)# in a file with values taken as

'flagname=value' from a control file (default input is '/proc/cmdline'). In the files that have

to be patched, the search and replace pattern must start with '#@', might have an

optional '*' after the flagname and must have one or more trailing '#'.

So by calling 'patcha <filename>' the file '<filename>' will be patched with information

taken from '/proc/cmdline'.

Calling 'patcha' without any parameters will show all the 'flagname=value' entries from

'/proc/cmdline'.

A different input file ('another_cmdline') can be passed to 'patcha':

 patcha -f another_cmdline

Without any other parameter 'patcha' will show the information taken from

'another_cmdline'. This input file must have 'cmdline'syntax, which means to be entries

like '<flagname>=<value>' separated by space.

 patcha -f another_cmdline patchfile

This will patch 'patchfile' with substitutions taken from 'another_cmdline'.

Version 0.93 23.10.2003 (c) J.W.
Usage:
$prog [-v] [-h] [-f cmdline] [file]
Options: -v show version only
 -f another input file (cmdline)
 -h this help
$prog patches files using Flag=value patterns from /proc/cmdline (default).
Without any parameters will show the values taken from /proc/cmdline.

Caveat: patcha patches only the first pattern of each line.

Each pattern will be expanded (or reduced) to the length of the value to be replaced

with and then replaced. Trailing chars will not be affected.

Examples:

With the input file 'try.in'

86

5. Netboot products: Automated OS installation and more

cat try.in
 tag1=very_long_substitution tag2=t2

and the file 'patch.me' to be patched:
cat patch.me
<#@tag1##########################>
<#@tag2##########################>
<#@tag1#>
<#@tag2#>
<#@tag1*##########################>
<#@tag2*##########################>
<#@tag1*#>
<#@tag2*#>
<#@tag1#><#@tag1#####>
<#@tag2*#######><#@tag1#>

the result will be:
./patcha -f try.in patch.me
cat patch.me
<very_long_substitution>
<t2>
<very_long_substitution>
<t2>
<very_long_substitution>
<t2>
<very_long_substitution>
<t2>
<very_long_substitution><#@tag1#####>
<t2><#@tag1#>

5.1.8. Integrating additional drivers in the unattended Windows installation

If some client hardware isn't supported by the standard Windows drivers, it could be
useful and sometimes even necessary to integrate new drivers into the unattended
installation. Regarding network devices this is very recommendable, because a client
without network is neither remote accessible, nor can the automated software
distribution connect to any distribution file shares.

The server can provide additional drivers to be installed during Windows setup. All of
these drivers must come with an '.inf' file, which holds the driver's installation

87

5. Netboot products: Automated OS installation and more

information. Any drivers which are packed as an executable cannot be used for this (but
often they can be unpacked to get the plain installation files).

If you just have some differing hardware, you can take drivers as provided by the
hardware manufacturer and put this to the distribution file share.

But if you have to support a lot of different hardware, it might be convenient to use
ready packed packages for a whole bunch of Windows XP-drivers as provided by
http://driverpacks.net/.

5.1.8.1. Simplified driver integration with symlinks

This method requires at least opsi V3.1 and winxppro_sp2-3.opsi.

You may download the current driverpacks (!!! about 2,5 GB !!!) from
http://driverpacks.net/DriverPacks/overview.php and save the to the server. Calling:
/opt/pcbin/install/winxppro/extract_driver_pack.py <path to the
compressed driverpacks>
these driver packs will be decompressed and stored in the directory
winxppro/drivers/drivers/D .

You may also use the command:
/opt/pcbin/install/winxppro/download_driver_pack.py . It will try to
download these driverpacks from a driverpack.net mirror and decompress them to the
correct directory.

Additional drivers can be added, each into its own subdirectory of
winxppro/drivers/drivers/preferred .

Then execute the script 'create_driver_links.py' from the winxppro directory.
The script searches all the directories beneath 'drivers' and creates links to assign
drivers to its hardware (using the PCI-IDs). Drivers found beneath the directory
'preferred' will indeed be preferred against other ones with the same PCI-IDs
beneath other directories. During installation, the script 'winxxpro.py' from the
bootimage identifies the client hardware and determines the required drivers. The
drivers will be copied to the hard disk, and the file 'unattend.txt' (which is the control file
for the Windows unattended installation) will be patched accordingly.

88

http://driverpacks.net/DriverPacks/overview.phpw
http://driverpacks.net/

5. Netboot products: Automated OS installation and more

If there is any hardware inventory data for a client, these data can be used to list the
drivers that will be selected by the bootimage for this client:
 winxppro/show_drivers.py <clientname>

Additional drivers that should be used by the setup even if they were not selected via
PCI-IDs should be placed beneath the directory
winxppro/drivers/drivers/additional . Using the product property 'additional'
it is possible to give a comma separated list of driver pathes beneath the additional
directory which should be used by the windows setup program.

5.1.8.2. Driver integration classic

The classic way to add special drivers to the unattended installation is to put them into
the OEM directory.

Shortly, the following is required to get this approach working:

• An .inf-file for each driver

• One directory per driver somewhere beneath the OEM directory

• Pathes to these directories in the file unattend.txt

For each additional driver there must be an '.inf' file holding the installation information
and a set of drivers (usually '.dll', '.sys' etc.). If you just have an executable ('.exe'), it
often can be unpacked to get the plain installation files. But without '.inf' file a driver
cannot be added to unattended setup the classic way.

This inf file must be copied together with the other installation files to a subdirectory of
OEM\$1.

Here is an example for adding drivers for Realtek 8139 network controllers:
Copy the drivers (including '.inf') to

P:\install\winxppro\oem\$1\setup\nic\rtl8139

It is assumed In this example that the opsi depot server has the installation files
directory for 'Windows XP Professional' in 'P:\install\winxppro'.

89

5. Netboot products: Automated OS installation and more

In order to inform the Windows setup program where to look for additional drivers you
have to patch the „OemPnpDriversPath“ entry of 'unattend.txt'. It must contain every
driver path to search (relative to $1) separated by semicolons, e.g:

OemPnpDriversPath="setup\vga\ati;setup\nic\rtl8139"

Observe:

The names of all driver files have to follow the 8.3 file naming convention, which is up to
8 characters for the filename and up to 3 characters for the file extension.

Another restriction is the limited string length for 'OemPnpDriversPath', which is up to 99
chars for Windows NT and older versions of Windows 2000. For an updated Windows
2000 it is limited to 255 chars and 4096 chars for Windows XP. So it is always a good
idea to keep directory names rather short and within a flat hierarchy.

Additional information

It is especially important to include the drivers for special network controllers to the
unattended installation, because a working network is required to get the software
distribution system running. Almost any other driver (graphic, sound ...) could also be
installed later on by the software distribution system.

On the internet you find a lot of information on driver integration, for instance at:
http://www.windows-unattended.de

5.2. Ntfs image (write and restore)

The products 'ntfs-write-image' and 'ntfs-restore-image' are utilities to save and restore
client partition images. Target (and source) for the image file has to be on the opsi
depot server and will be transferred per ssh (user pcpatch) as specified as an product
property.

5.3. Memtest

The product 'memtest' is a utility to perform a client memory test.

90

http://www.windows-unattended.de/

5. Netboot products: Automated OS installation and more

5.4. Wipedisk

The product 'wipedisk' overwrites the complete hard disk (partion=0) or several

partitions with different patterns. The number of consecutive write operations to perform

is specified as the product property 'iterations' (1-25).

91

6. opsi-Module: depot server

6. opsi-Module: depot server

6.1. Overview

The opsi depot server is a special server installation based on GNU/Debian Linux. It is

the base installation for the modules 'software distribution' and 'operating system

installation'.

For the software distribution it provides secured file shares, where configuration files

and software packets (software depots) are protected against unauthorized access. The

password transmission to the client for connecting these shares is encrypted, so just the

modules of the software distribution and the system administrator get access to these

shares.

The opsi depot server comes with a web interface for opsi configuration and abstraction

layer for the data backend.

Another important module of the opsi depot server is to supply of services for the

automated operating system installation:

• dhcp for the administration of IP addresses,

• tftp for the transmission of bootimages and configuration information.

In addition some interactive and scriptable tools for the administration of the

configuration files and the boot images are provided.

For security reasons, stability and minimum resource consumption the opsi depot server

is limited to the reasonable and so the hardware requirements are very low. The opsi

depot server can also run as a virtual instance, e.g. vmware® (www.vmware.com).

6.2. Installation and initial operation

The installation media to install an opsi depot server can be downloaded from the opsi
website.

92

6. opsi-Module: depot server

6.3. Access to the graphic user interface of the depot server via VNC
Opsi depot server has no X-server for special hardware. The console of the depot
server is plain text therefore. As X-server the (tight) VNC-server is in operation. So
using vncviewer the X-server running on the opsi depot server is accessible from any
computer in your network. This structure (without any hardware specific adaptions)
allows for good standardization, which simplifies maintenance and increases stability.

At starting the depot server a VNC-server is started for every administrator, who is
registered in the file /etc/vncuser. If for any reason the VNC-server isn't running, it can
be started from the command prompt as 'vnc-server'.

Configuring the VNC-Servers:

The file /etc/vncusers is the configuration file for the VNC-Server. For every user a
„default“ VNC-Server can be set. This VNC-Server will start when the booting the opsi
depot server.

#parameters for vncserver
#
#examples:
#
#username:displayno:resolution:start_at_boot:localhost:
#test2:45:800x600:start_at_boot:localhost:
#test3:46:800x600::: # mandatory entries
#
#start_at_boot and localhost can be omitted, but not the colons!
#displayno should be different for each entry
root:49:1260x960:start_at_boot::

The file has a similar structure as the /etc/passwd (important is the number of colons
for they are field delimiters).

1. Field: user name

2. Field: this is the display number, the port the VNC-server listens to (1-99 allowed)

3. Field: display resolution. For a 1024x786 display will 1050x700 be a good choice.

4. Field: start_at_boot, only with this text at the boot of the opsi depot server the VNC-
server will be started automatically; (usually not necessary).

5. Field: localhost, the VNC-server can be connected from localhost only. This can be
used for ssh tunneling.

93

6. opsi-Module: depot server

Being logged on as a user at the opsi depot server, the vncserver specified for that user
can be started by 'vncserver'.

The first start of vncserver prompts for a password, which will be saved in '~USER/.vnc/
passwd' and will be valid for all VNC-servers of this user.

To stop the VNC-server:
vncserver -kill :<DisplayNumber>

What is VNC ?

VNC is open source software distributed under the GNU Public License.

VNC (Virtual Network Computing) is an (almost) operating system-independent
client/server application, which provides the graphical user interface of a specified
computer (= server) on the own desktop (= Client) to work with this computer remotely.
VNC consists of a server and a client application, which can be configured according to
different purposes.
Regarding to the VNC naming convention, the 'client' is the local computer you are
sitting at. The 'server' is the remote computer, which is to be accessed via network.

The remote server application exports its display to the local client application and also
provides an interface for keyboard and mouse input. For security reasons the server
application should be configured for using passwords, which have to be passed at the
connection request.

Websites for vnc : http://www.realvnc.com/
and tightvnc: http://www.tightvnc.com/

6.4. Shares for software packets and configuration files

6.4.1. Samba Configuration

The opsi depot server provides network shares holding the configuration information
and the software packets. These shares can be mounted by the clients. For Windows
Clients the shares are provided by SAMBA (version 3.x).

On the opsi depot server the SAMBA configuration files are located in '/etc/samba'. The
file '/etc/samba/smb.conf' holds the general settings and configurations. The
specifications of the shares are also located in 'smb.conf' or in the include file

94

http://www.tightvnc.com/
http://www.realvnc.com/

6. opsi-Module: depot server

'share.conf'. In this file it is configured, what shares are provided for the modules
'software depot server', 'utilities server' and 'configuration management server'. There
can be a different share for each module, but the default setting is, that all of these
modules are using a single share. The default setting is to share the directory
'/opt/pcbin' as the SAMBA share 'opt_pcbin'. Any changes to these defaults have to be
configured in the file '/etc/samba/share.conf' and also in the global opsi network
configuration. Changing the SAMBA configuration, a SAMBA reload is required for the
changes to come into effect (/etc/init.d/samba reload).

In principle the SAMBA 3.x installation of the opsi depot server can be extended to be a
a fully featured file- and print server. Uib gmbh offers comprehensive support in this
area.

Example for the share.conf:
[opt_pcbin]
 available = yes
 comment = opsi depot share
 path = /opt/pcbin
 oplocks = no
 level2 oplocks = no
 writeable = yes
 invalid users = root
[opsi_config]
 available = yes
 comment = opsi config share
 path = /var/lib/opsi/config
 writeable = yes
 invalid users = root
[opsi_workbench]
 available = yes
 comment = opsi workbench share
 path = /home/opsiproducts
 writeable = yes
 invalid users = root

6.4.2. Required administrative user accounts and groups

6.4.2.1. User opsiconfd

The opsiconfd deamon is started as user 'opsiconfd'.

95

6. opsi-Module: depot server

6.4.2.2. User pcpatch

Access to the client configuration files and the software depot should be restricted and
should be granted only to the system administrators and the software distribution
service (opsi preLoginLoader) running on the client. This for instance is required to meet
the license agreements, which is in the system administrators responsibility.

To allow this the user account 'pcpatch' gets the user-ID 992, the home directory
'/opt/pcbin/pcpatch' and as default the password 'Umwelt'. Change the password with:
 opsi-admin -d task setPcpatchPassword
The user 'pcpatch' is the owner of the opsi configuration files and on this account run
the opsi service processes. Also the opsi-PreLoginLoader uses this account for
connecting the depot server shares.

6.4.2.3. Group pcpatch

Beside the user 'pcpatch' there is also a group 'pcpatch'. The user 'pcpatch' as well as
the group 'pcpatch' has full access on most of the opsi files. All the administrators of the
opsi depot server should therefor be member of the group 'pcpatch', so they have write
access to the configuration data.

A user can join group 'pcpatch' by: 'addgroup <user> pcpatch'.

6.4.2.4. Group opsiadmin

Members of the group 'opsiadmin' are permitted to connect the opsi-webservice and
can use for instance the 'opsi-configed' configuration editor. Therefor all opsi
administrators should be members of the group 'pcpatch'.

A user can join group 'opsiadmin' by: 'addgroup <user> opsiadmin'.

6.4.3. Depot share with software packets (install)

The depot-Share provides all the software-packets which are installable by the client
task 'wInst'. The default directory for the software packets is the directory
'/opt/pcbin/install'. In this directory each software packet has its own sub directory

96

6. opsi-Module: depot server

named as the software packet. These sub directories contain the packet-specific
installation scripts and files.

6.4.4. Config share with configuration and logging (pcpatch)

When using the 'file' backend, the client configuration files are located in the
configuration-share, one file per client. This directory is preset to '/opt/pcbin/pcpatch' on
the opsi depot server. In the sub directory 'pclog' are the client-specific log files: log file
from the OS installation (e.g. hardware information, hard disk partition info) and the
error logs from the client software installation. Using the 'File31' backend all the
configuration data is located in '/var/lib/opsi/config'.

6.4.5. Utils share: Utilities (utils)

The utils-share contains several opsi client utilities. The directory is preset to
'/opt/pcbin/utils' on the opsi depot server.

6.5. Administration of PCs via DHCP

6.5.1. What is DHCP?

DHCP is part of the TCP/IP protocol stack to exchange and set information about the
network configuration and components between client and server.

The DHCP protocol can be seen as an extension of the older BOOTP protocol. It allows
the dynamic allocation of IP addresses for client PCs (this DHCP feature is not used
with the opsi depot server).

For client PCs most of the common network controllers can be used if they have a
bootprom:

● Network controllers with PXE-bootprom (= Preboot Execution Environment)

● Network controllers with older TCP/IP BOOTP-bootprom (e.g. bootix

bootproms).

The IP address of a PC-client can be found in the '/etc/hosts'.

97

6. opsi-Module: depot server

The other configuration data is located in the file '/etc/dhcp3/dhcpd.conf'. This file can
be edited (in addition to the common unix/linux editors) web based with the gui-tool
webmin(web based interface for system administration for Unix).

Basically there are three ways of IP address allocation on DHCP-Servers:

Dynamically: From within a certain range of IP addresses vacant addresses are

assigned to a client for a certain amount of time. At expiration – even during a

working-session – the client has to try to extend this assignment, but eventually

the client gets a new IP address. In this way the same IP address can be used at

different times by different clients.

Automatically: An unused IP address is assigned to each client automatically for

an unlimited time.

Manually: The assignment of the IP addresses is configured by the system

administrators manually. At a DHCP-request this address is assigned to the

client. For the opsi depot server this method is recommended, since this

simplifies the network administration.

PCs with a static IP address can use both protocols DHCP/PXE or BOOTP (depends on
the network controller's bootprom).

A dynamic or automatic IP address assignment can only be realized with DHCP and
PXE bootproms.

BOOTP (Bootstrap Protocol) only supports static assignment of MAC and IP
addresses, like the manual assignment with DHCP.
There are only 2 types of data packets with BOOTP: BOOTREQUEST (Client-
Broadcast to Server = request for IP address and boot parameters to a server) and
BOOTREPLY (Server to Client: advise of IP address and boot parameters).

At the start of the network connection the only information a network controller has got
is its own hardware address (= hardware ethernet, MAC of the NIC), consisting of six
two-digit hexadecimal numbers.

98

6. opsi-Module: depot server

The PXE firmware is activated at boot time and sends a DHCPDISCOVER broadcast

request into the network (standard port). It is a request for an IP address and for the

name of the DHCP server in charge.

With DHCPOFFER the DHCP-Server makes a proposal.

DHCPREQUEST is the client's answer to the server, if the offered IP address is
accepted (there might be several DHCP servers in the network).

With DHCPACK the DHCP server acknowledges the client request and sends the
requested information to the client.

Additional data packets:

 DHCPNACK Rejection of a DHCPREQUEST by the Server.

 DHCPDECLINE Rejection by the Client, because the offered IP address is

already in use

 DHCPRELEASE The client releases the IP address (so it is

available for a new assignment).

 DHCPINFORM Client request for parameters (but not for an IP address).

6.5.2. Dhcpd.conf

The opsi depot servers 'dhcpd.conf' is limited to just the required information and
functions:

- PC name,
- hardware ethernet address,
- IP address of the gateway,
- net mask,
- IP address of the boot server,
- name of the boot file,
- URL of the OPSI configuration files.

Internal structure of the 'dhcpd.conf'

99

6. opsi-Module: depot server

Lines with configuration instructions are terminated by a semicolon (;). Empty lines are
allowed. Comments begin with a hash(#) (the „host description“, an additional
description for the PC in front of the host name, is realized in the same way.).

At the beginning of the '/etc/dhcp3/dhcpd.conf' are some general parameters. In the
second part the entries for subnets, groups and hosts are located. A hierarchical
grouping of clients can be done by enclosing entries (e. g. subnet and group) with curly
brackets. The defaults of a block refer to all elements within this block.

General parameters / example

Sample configuration file for ISC dhcpd for Debian
also answer bootp questions
allow bootp;

The network protocol bootp is supported.

PC-specific entries

A DHCP-configuration file must have at least one subnet definition. Everything defined
within the brackets is valid for all hosts or groups of that subnet.
By the element 'group' groups of computers can be defined, which have common
parameters (so the common parameters do not have to be defined for every client).
If different instructions are set on different levels, then the innermost definition
overwrites the outer one.

subnet{
.....

group{
.....

host{
.....
}

}
}

Example

Server Hostname

100

6. opsi-Module: depot server

server-name "schleppi";
subnet 194.31.185.0 netmask 255.255.255.0{
 option routers 194.31.185.5;
 option domain-name "uib.net";
 option domain-name-servers 194.31.185.14;
 #Group the PXE bootable hosts together
 group {

Here is the beginning of a group of PCs within a subnet;
Example: Group of PCs with PXE-Network-Interface-Controllers.

 # PXE-specific configuration directives...
 # option dhcp-class-identifier "PXEClient";
 # unless you're using dynamic addresses
 filename "linux/pxelinux.0";

All PCs within this group use a Linux bootfile, unless something different is defined in
the PC-entry.

host pcbon13 {
hardware ethernet 00:00:CB:62:EB:2F;

}

This entry only contains hostname and hardware address (MAC).
The hardware address is six couples of hexadecimal characters (not case sensitive),
which must be separated by a colon!

 }
}

The curly brackets mark the end of the segments 'group' and 'subnet'.

If a new PC should join the subnet, it has to be registered in 'dhcpd.conf'.

After changing the DHCP configuration file, the DHCP server must be restarted, so
that the new configuration is applied to the DHCP server:

/etc/init.d/dhcp3-server restart

101

6. opsi-Module: depot server

6.5.3. Tools: DHCP administration with Webmin

Since the syntax of the 'dhcpd.conf' is quite complex, the depot server provides a
graphical web based tool for DHCP administration. The well known administration tool
'webmin' is used as a graphical interface to the 'dhcpd.conf'.
The service 'webmin' should be running after booting the server. Otherwise it can be
started (as user root) by: '/etc/init.d/webmin start'.

If 'webmin' is running on the server, it can be connected from any client by:
'https://<server name>:10000' (default user/password: admin/linux123).

102

Figure 25: Startup screen of the tool Webmin

Figure 24: Webmin-input mask for groups

6. opsi-Module: depot server

6.6. opsi V3: opsi configuration API, opsiconfd and backend manager

Opsi V3 comes with a python based configuration API. This API provides an abstraction
layer interface to the opsi configuration, which is independent of the actual type of
backend in use. Also there are some internal functions to operate on a special type of
backend. The backend manager configuration file (/etc/opsi/backendmanager.conf)
defines which backend type is to use.

The tool 'opsi-admin' provides a command line access to the configuration-API. In the
corresponding chapter you get a detailed overview of the API functions.

In addition the opsi server provides a web service as an interface to the API to be
connected by other tools and services (for example the graphical configuration tools,
opsi-wInst or opsi bootimage). The web service isn't based on XML/Soap but on the
compact JSON standard (www.json.org). The web service is part of the opsi
configuration daemon 'opsiconfd'. The web service can be connected via https through
port 4447 and also provides a simple interactive web GUI.

The 'opsiconfd' runs as user 'pcpatch'. So the user 'pcpatch' since opsi V3 needs
different privileges as with opsi V2.

The configuration file for 'opsiconfd' is '/etc/opsi/opsiconfd.conf'.

The 'opsiconfd' log files are written to '/var/log/opsi/opsiconfd', a separate file for each
client.

103

7. opsi-server with multiple depots

7. opsi-server with multiple depots

7.1. Support

The functions described in this chapter are complex and you will get only support on
this topic via a professional support contract.

7.2. Concept

Supporting multiple depotshares in opsi aims at the following targets:

● central configuration data storage and configuration management

● providing the software depots on decentral servers

● automated deployment of software packages from the central server to the local

depots

Accordingly, it is implemented:

● All configuration data is stored on the central opsi-config-server

● All clients connect to this config-server in order to request their configuration data. The
configuration data comprise the information on method and target of the depot-server
connection.

● All installable software is stored on depot-servers.

● The depot-servers have as well an opsipxeconfd running by which they provide
bootimages to clients via PXE/tftp.

104

7. opsi-server with multiple depots

● opsi-package-manager. A program to (de-)install opsi packages on one ore more
depot-servers.

● The opsi packages are copied via webdav protocol to the depot-servers and are
installed from the opsiconfd via a webservice call.

● opsi-configed supports the management of multiple depots.

105

Schema: opsi with a decentral depot-server

opsi-configed (Admininterface)

opsiconfd (webservice)

opsi-Library

Client

Depotshares

share
share
share
share
share
share
share

decentral server

Service
Mount
PXE

share
opsipxeconfd

Tftpbereich

opsi-atftpd

opsipxeconfd
opsi-atftpd

Tftp-Bereich

config
files

opsiconfd

7. opsi-server with multiple depots

● Clients connected to different depots can be managed in one bundle if the
involved depots are synchronized (have all product packages in identical
versions).

the following schema gives a more detailled view on the communication between the
components of a opsi multi depotshare environment.

7.3. Creating a (slave) depot-servers

In order to create a opsi-depot-server you have to install a standard opsi-server (see
opsi-server installation manual). This server can be configured to act as depot-server by
calling the script /usr/share/opsi/register-depot.py . Because this script does
not only reconfigure the local server, but also registers this server as depot-server with
the central config-server, username and password of a member of the opsiadmin group
have to be suplied here.

106

Abbildung 26: Komponenten und Kommunikation einer Multidepotinstallation

7. opsi-server with multiple depots

Example:
vmix12.uib.local will be reconfigured as depot-server and registered with the config-
server bonifax.uib.local:
vmix12:~# /usr/share/opsi/register-depot.py
**

* This tool will register the current server as depotserver.
*
* The config file /etc/opsi/backendManager.d/15_jsonrpc.conf will be
recreated. *
* =>>> Press <CTRL> + <C> to abort <<<=
*
**

 Config server [localhost]: bonifax.uib.local
 Account name to use for login [root]: oertel
 Account password [password]:
Connecting to host 'bonifax.uib.local' as user 'oertel'
 The subnet this depotserver is resonsible for [192.168.4.0/24]:
 Description for this depotserver [Depotserver vmix12]:
 Additional notes for this depotserver [Notes for vmix12]:
Creating depot 'vmix12.uib.local'
Requesting base-url '/rpc', query '{"params":
["vmix12","uib.local","file:///opt/pcbin/install","smb://vmix12/opst_pcbin/ins
tall","file:///var/lib/opsi/products","webdavs://vmix12.uib.local:4447/product
s","192.168.4.0/24","Depotserver vmix12","Notes for
vmix12"],"id":1,"method":"createDepot"}' failed:
Trying to reconnect...
Testing connection and setting pcpatch password
Connection / credentials ok, pcpatch password set!
Creating jsonrpc backend config file
/etc/opsi/backendManager.d/15_jsonrpc.conf
Patching config file /etc/opsi/backendManager.d/30_vars.conf

7.4. packetmangment with the opsi-package-manager

see also chapter 3.4 Tool: opsi-package-manager: (de-)installs opsi-packages on page
28

In oder to manage opsi-packages with different depot-servers the opsi-package-
manager got the option -d (or --depot). With this option you can give the target depot-
server for the Installation. Using the keyword 'ALL' the opsi package will be copied to

107

7. opsi-server with multiple depots

/var/lib/opsi/products on all known depot-servers and then installed via a local
webservice call.

If you dont give the option -d, the opsi package will be only installed on the local server
(without upload to /var/lib/opsi/products)

Example:
Install the package softprod_1.0-5.opsi on all known depot-servers:
opsi-package-manager -d ALL -i softprod_1.0-5.opsi
Processing upload of 'softprod_1.0-5.opsi' to depot 'bonifax.uib.local'
Processing upload of 'softprod_1.0-5.opsi' to depot 'vmix13.uib.local'
Processing upload of 'softprod_1.0-5.opsi' to depot 'vmix12.uib.local'
Overwriting destination 'softprod_1.0-5.opsi' on depot 'bonifax.uib.local'
Starting upload of 'softprod_1.0-5.opsi' to depot 'bonifax.uib.local'
 100.00% 3 KB 0 KB/s 00:00 ETAs - softprod_1.0-5.opsi >>
bonifax.uib.local
Upload of 'softprod_1.0-5.opsi' to depot 'bonifax.uib.local' done
Installing package 'softprod_1.0-5.opsi' on depot 'bonifax.uib.local'
Overwriting destination 'softprod_1.0-5.opsi' on depot 'vmix13.uib.local'
Starting upload of 'softprod_1.0-5.opsi' to depot 'vmix13.uib.local'
Overwriting destination 'softprod_1.0-5.opsi' on depot 'vmix12.uib.local'
Starting upload of 'softprod_1.0-5.opsi' to depot 'vmix12.uib.local'
 100.00% 3 KB 3 KB/s 00:00 ETAs - softprod_1.0-5.opsi >>
vmix13.uib.local
 100.00% 3 KB 3 KB/s 00:00 ETAs - softprod_1.0-5.opsi >>
vmix12.uib.local
Upload of 'softprod_1.0-5.opsi' to depot 'vmix12.uib.local' done
Installing package 'softprod_1.0-5.opsi' on depot 'vmix12.uib.local'
Upload of 'softprod_1.0-5.opsi' to depot 'vmix13.uib.local' done
Installing package 'softprod_1.0-5.opsi' on depot 'vmix13.uib.local'
Installation of package '/var/lib/opsi/products/softprod_1.0-5.opsi' on depot
'bonifax.uib.local' finished
Installation of package '/var/lib/opsi/products/softprod_1.0-5.opsi' on depot
'vmix13.uib.local' finished
Installation of package '/var/lib/opsi/products/softprod_1.0-5.opsi' on depot
'vmix12.uib.local' finished
In this example three depot-servers are known (bonifax.uib.local, vmix12.uib.local,
vmix13.uib.local). The opsi-package-manager first starts the uploading of the package
to the depots. When the uploads are finished the installation takes place. The local
depot is treated in the same way as the external depots.

In order to get informations about what are the differences between depots you may call
opsi-package-manager with the option -D (or --differences).

Example:
Show the differences between all known depots regarding the product mshotfix
opsi-package-manager -D -d ALL mshotfix

108

7. opsi-server with multiple depots

mshotfix
 vmix12.uib.local : 200804-1
 vmix13.uib.local : 200804-1
 bonifax.uib.local: 200805-2

7.5. configuration files

see Chapter 12.3.1.5 Configuration files in /var/lib/opsi/config/depots/<depotid> on page
134

109

8. DHCP and name resolving (DNS)

8. DHCP and name resolving (DNS)

have to be written

110

9. opsi data storage (backend)

9. opsi data storage (backend)

9.1. File backend

With the backend type 'file backend' the configuration information is kept in text files (ini
file syntax) on the server.

9.1.1. File3.1-Backend (opsi 3.1)

Basic features of the backend 'File3.1' :

● current opsi default backend

● Linux standard base conform

● not backward compatible with opsi 2.x/3.0

● all opsi functions are available with this backend

● works only for clients which are run in 'service'-mode (accessing their
configuration files via opsi service).

The actual data files are kept in '/var/lib/opsi'.

Content and configuration of these files are described in the chapter 10 “Important data
files of the opsi depot server”.

9.1.2. File-Backend (opsi 3.0)

Basic features of the backend 'File' :

● deprecated and shouldn't be used with new installations

● not Linux standard base conform

● backward compatible to opsi 2.x/3.0

● not all of the opsi functions are available with this backend.

111

9. opsi data storage (backend)

● works also with clients in 'Classic' mode (clients that do not get their configuration
information from the opsi service, but by direct access to the configuration files).

The configuration files are spread to the following areas.

● Configuration data files in the tftp area
In the directory '/tftpboot/opsi' are the general client configuration file
'global.sysconf' and the overriding <pcname>.sysconf files with the client specific
configurations.

● Config share
in the directory '/opt/pcbin/pcpatch' are the client software configuration files and
depot configurations. This area is shared as config share per Samba.

● Logging and hard- and software inventory
The hardware informations collected from the boot image will be saved as
'<configshare>/pclog/<pcname>.hw'.
The software inventory information detected by the product 'softinventory' will be
saved as '<configshare>/pclog/<pcname>.softinv'.

Content and internal structure of these files are described in the chapter 10 “Important
data files of the opsi depot server”.

9.2. LDAP backend

The opsi-LDAP-schema is saved as '/etc/ldap/schema'.

For activation of the LDAP-Backend a functional LDAP-server has to be accessible.

The opsi LDAP-schema has to be included to the LDAP configuration file
'/etc/ldap/lapd.conf':
include /etc/ldap/schema/opsi.schema
(the LDAP service 'sldap' has to be restarted)

The next step is to patch the backend configuration of opsi.

112

9. opsi data storage (backend)

9.2.1. Integrating the LDAP-backend

To activate the LDAP-backend change the following settings in
'/etc/opsi/backendmanager.conf':

Settings for the file-backend:
self.backends[BACKEND_FILE] = { 'load': True }
self.backends[BACKEND_LDAP] = { 'load': False }

Settings for the LDAP-backend:
self.backends[BACKEND_FILE] = { 'load': False }
self.backends[BACKEND_LDAP] = { 'load': True }

9.2.2. Configuring the LDAP-backend
 self.backends[BACKEND_LDAP]['config'] = {
 "host": "localhost",
 "bindDn": "cn=admin,%s" % baseDn,
 "bindPw": "password",
 }

9.2.3. Assign the LDAP-backend to methods
self.defaultBackend = BACKEND_LDAP
self.clientManagingBackend = [BACKEND_DHCPD, BACKEND_LDAP]
self.pxebootconfBackend = BACKEND_OPSIPXECONFD
self.passwordBackend = BACKEND_FILE31
self.pckeyBackend = BACKEND_FILE31
self.swinventBackend = BACKEND_MYSQL
self.hwinventBackend = BACKEND_MYSQL
self.loggingBackend = BACKEND_FILE31
In this example the LDAP backend is set as the default backend. The PC-keys and the
pcpatch-passwords are still administrated as files.

Now restart the opsi config daemon 'opsiconfd':
/etc/init.d/opsiconfd restart
The following command creates the LDAP base structure:
opsi-admin -d method createOpsiBase

Underneath the LDAP-base node is an organizationalRole cn=opsi (e.g. cn=opsi,
dc=uib, dc=local). You find underneath the node opsi all of the opsi data. This structure

113

9. opsi data storage (backend)

can be explored very easily with a graphical frontend like the Jxplorer (which is included
in the opsi-adminutils).

114

9. opsi data storage (backend)

9.3. MySQL-backend for inventory data

9.3.1. overview and datastructure

Inventory data is stored in structured text files by default. This type of storage is not very
useful if you wish to form free queries on these data. In order to allow free queries and
reports a mysql based backend for the inventory data has been introduced.

The main characteristics of this backend are:

● only for inventory data (up to now)

● optional (not the default backend)

● a very fine granulated data structure with an additional table to make queries
easier.

● a history function which tracks changes in the inventory.

The MySQL based backend for the inventory data exists since opsi 3.3. Regarding the
very different structure of the components in the inventory the resulting datastructure is
complex.

The table 'hosts' comprises all known hosts. For every device type we use two tables:
The HARDWARE_DEVICE_ .table describes the model without individual aspects like
the serial number. The HARDWARE_CONFIG table stores these individual and
configuration data.

These both tables are connected via the field hardware_id. This is the resulting list of
tables:
HARDWARE_CONFIG_1394_CONTROLLER
HARDWARE_CONFIG_AUDIO_CONTROLLER
HARDWARE_CONFIG_BASE_BOARD
HARDWARE_CONFIG_BIOS
HARDWARE_CONFIG_CACHE_MEMORY
HARDWARE_CONFIG_COMPUTER_SYSTEM
HARDWARE_CONFIG_DISK_PARTITION
HARDWARE_CONFIG_FLOPPY_CONTROLLER
HARDWARE_CONFIG_FLOPPY_DRIVE
HARDWARE_CONFIG_HARDDISK_DRIVE
HARDWARE_CONFIG_IDE_CONTROLLER
HARDWARE_CONFIG_KEYBOARD
HARDWARE_CONFIG_MEMORY_BANK
HARDWARE_CONFIG_MEMORY_MODULE

115

9. opsi data storage (backend)

HARDWARE_CONFIG_MONITOR
HARDWARE_CONFIG_NETWORK_CONTROLLER
HARDWARE_CONFIG_OPTICAL_DRIVE
HARDWARE_CONFIG_PCI_DEVICE
HARDWARE_CONFIG_PCMCIA_CONTROLLER
HARDWARE_CONFIG_POINTING_DEVICE
HARDWARE_CONFIG_PORT_CONNECTOR
HARDWARE_CONFIG_PRINTER
HARDWARE_CONFIG_PROCESSOR
HARDWARE_CONFIG_SCSI_CONTROLLER
HARDWARE_CONFIG_SYSTEM_SLOT
HARDWARE_CONFIG_TAPE_DRIVE
HARDWARE_CONFIG_USB_CONTROLLER
HARDWARE_CONFIG_VIDEO_CONTROLLER
HARDWARE_DEVICE_1394_CONTROLLER
HARDWARE_DEVICE_AUDIO_CONTROLLER
HARDWARE_DEVICE_BASE_BOARD
HARDWARE_DEVICE_BIOS
HARDWARE_DEVICE_CACHE_MEMORY
HARDWARE_DEVICE_COMPUTER_SYSTEM
HARDWARE_DEVICE_DISK_PARTITION
HARDWARE_DEVICE_FLOPPY_CONTROLLER
HARDWARE_DEVICE_FLOPPY_DRIVE
HARDWARE_DEVICE_HARDDISK_DRIVE
HARDWARE_DEVICE_IDE_CONTROLLER
HARDWARE_DEVICE_KEYBOARD
HARDWARE_DEVICE_MEMORY_BANK
HARDWARE_DEVICE_MEMORY_MODULE
HARDWARE_DEVICE_MONITOR
HARDWARE_DEVICE_NETWORK_CONTROLLER
HARDWARE_DEVICE_OPTICAL_DRIVE
HARDWARE_DEVICE_PCI_DEVICE
HARDWARE_DEVICE_PCMCIA_CONTROLLER
HARDWARE_DEVICE_POINTING_DEVICE
HARDWARE_DEVICE_PORT_CONNECTOR
HARDWARE_DEVICE_PRINTER
HARDWARE_DEVICE_PROCESSOR
HARDWARE_DEVICE_SCSI_CONTROLLER
HARDWARE_DEVICE_SYSTEM_SLOT
HARDWARE_DEVICE_TAPE_DRIVE
HARDWARE_DEVICE_USB_CONTROLLER
HARDWARE_DEVICE_VIDEO_CONTROLLER
HARDWARE_INFO
HOST
SOFTWARE
SOFTWARE_CONFIG

Because this data structure is not easy to handle, there is a table HARDWARE_INFO
which collects the information of different devices:

116

9. opsi data storage (backend)

CREATE TABLE `opsi`.`HARDWARE_INFO` (
 `config_id` int(11) NOT NULL, //Verweis auf Device Configtabelle
 `host_id` int(11) NOT NULL, //Verweis auf host-Tabelle
 `hardware_id` int(11) NOT NULL, //Verweis auf Device Tabelle
 `hardware_class` varchar(50) NOT NULL, //Device
 `audit_firstseen` timestamp NOT NULL, //
 `audit_lastseen` timestamp NOT NULL,
 `audit_state` tinyint(4) NOT NULL, //1=aktuell 0=nicht mehr aktuell
 `internalConnectorType` varchar(60) ,
 `verticalResolution` int(11),
 `totalPhysicalMemory` bigint(20),
 `family` varchar(50) ,
 `vendorId` varchar(4) ,
 `addressWidth` tinyint(4),
 `videoProcessor` varchar(20) ,
 `numberOfFunctionKeys` int(11),
 `maxDataWidth` tinyint(4),
 `memoryType` varchar(20) ,
 `maxSize` int(11),
 `tag` varchar(100) ,
 `voltage` double,
 `slots` tinyint(4),
 `screenWidth` int(11),
 `connectorType` varchar(60) ,
 `maxCapacity` bigint(20),
 `size` bigint(20),
 `formFactor` varchar(10) ,
 `driveLetter` varchar(2) ,
 `capacity` bigint(20),
 `socketDesignation` varchar(100) ,
 `externalConnectorType` varchar(60) ,
 `numberOfButtons` tinyint(4),
 `capabilities` varchar(200) ,
 `port` varchar(20) ,
 `dataWidth` tinyint(4),
 `horizontalResolution` int(11),
 `version` varchar(50) ,
 `maxClockSpeed` bigint(20),
 `location` varchar(50) ,
 `paperSizesSupported` varchar(200) ,
 `deviceType` varchar(10) ,
 `subsystemVendorId` varchar(4) ,
 `adapterRAM` bigint(20),
 `speed` int(11),
 `architecture` varchar(50) ,
 `status` varchar(20) ,
 `freeSpace` bigint(20),
 `product` varchar(100) ,
 `vendor` varchar(50) ,
 `description` varchar(100) ,
 `index` int(11),
 `systemType` varchar(50) ,
 `macAddress` varchar(20) ,
 `installedSize` int(11),
 `driverName` varchar(100) ,
 `subsystemDeviceId` varchar(4) ,
 `internalDesignator` varchar(60) ,

117

9. opsi data storage (backend)

 `currentUsage` varchar(20) ,
 `extClock` int(11),
 `heads` int(11),
 `autoSense` varchar(20) ,
 `currentClockSpeed` bigint(20),
 `netConnectionStatus` varchar(20) ,
 `partitions` tinyint(4),
 `maxSpeed` int(11),
 `busId` varchar(60) ,
 `name` varchar(100) ,
 `sectors` bigint(20),
 `level` varchar(10) ,
 `serialNumber` varchar(50) ,
 `screenHeight` int(11),
 `startingOffset` bigint(20),
 `externalDesignator` varchar(60) ,
 `filesystem` varchar(50) ,
 `cylinders` int(11),
 `model` varchar(100) ,
 `revision` varchar(4) ,
 `deviceLocator` varchar(100) ,
 `adapterType` varchar(20) ,
 `deviceId` varchar(4) ,
 PRIMARY KEY (`config_id`,`host_id`,`hardware_class`,`hardware_id`)
)
Which field name in the database is corresponding to which reported and localized
name in the opsi managementinterface is defined in a configuration file. Example
 (/etc/opsi/hwaudit/locales/de_DE):
DEVICE_ID.deviceType = Gerätetyp
DEVICE_ID.vendorId = Hersteller-ID
DEVICE_ID.deviceId = Geräte-ID
DEVICE_ID.subsystemVendorId = Subsystem-Hersteller-ID
DEVICE_ID.subsystemDeviceId = Subsystem-Geräte-ID
DEVICE_ID.revision= Revision
BASIC_INFO.name = Name
BASIC_INFO.description = Beschreibung
HARDWARE_DEVICE.vendor = Hersteller
HARDWARE_DEVICE.model = Modell
HARDWARE_DEVICE.serialNumber = Seriennummmer
COMPUTER_SYSTEM = Computer
COMPUTER_SYSTEM.systemType = Typ
COMPUTER_SYSTEM.totalPhysicalMemory = Arbeitsspeicher
BASE_BOARD = Hauptplatine
BASE_BOARD.product = Produkt
BIOS = BIOS
BIOS.version = Version
SYSTEM_SLOT = System-Steckplatz
SYSTEM_SLOT.currentUsage = Verwendung
SYSTEM_SLOT.status = Status
SYSTEM_SLOT.maxDataWidth = Max. Busbreite
PORT_CONNECTOR = Port
PORT_CONNECTOR.connectorType = Attribute
PORT_CONNECTOR.internalDesignator = Interne Bezeichnung
PORT_CONNECTOR.internalConnectorType = Interner Typ

118

9. opsi data storage (backend)

PORT_CONNECTOR.externalDesignator = Externe Bezeichnung
PORT_CONNECTOR.externalConnectorType = Externer Typ
PROCESSOR = Prozessor
PROCESSOR.architecture = Architektur
PROCESSOR.family = Familie
PROCESSOR.currentClockSpeed = Momentane Taktung
PROCESSOR.maxClockSpeed = Maximale Taktung
PROCESSOR.extClock = Externe Taktung
PROCESSOR.processorId = Prozessor-ID
PROCESSOR.addressWidth = Adress-Bits
PROCESSOR.socketDesignation = Zugehöriger Sockel
PROCESSOR.voltage = Spannung
MEMORY_BANK = Speicher-Bank
MEMORY_BANK.location = Position
MEMORY_BANK.maxCapacity = Maximale Kapazität
MEMORY_BANK.slots = Steckplätze
MEMORY_MODULE = Speicher-Modul
MEMORY_MODULE.deviceLocator = Zugehöriger Sockel
MEMORY_MODULE.capacity = Kapazität
MEMORY_MODULE.formFactor = Bauart
MEMORY_MODULE.speed = Taktung
MEMORY_MODULE.memoryType = Speichertyp
MEMORY_MODULE.dataWidth = Datenbreite
MEMORY_MODULE.tag = Bezeichnung
CACHE_MEMORY = Zwischenspeicher
CACHE_MEMORY.installedSize = Installierte Größe
CACHE_MEMORY.maxSize = Maximale Größe
CACHE_MEMORY.location = Position
CACHE_MEMORY.level = Level
PCI_DEVICE = PCI-Gerät
PCI_DEVICE.busId = Bus-ID
NETWORK_CONTROLLER = Netzwerkkarte
NETWORK_CONTROLLER.adapterType = Adapter-Typ
NETWORK_CONTROLLER.maxSpeed = Maximale Geschwindigkeit
NETWORK_CONTROLLER.macAddress = MAC-Adresse
NETWORK_CONTROLLER.netConnectionStatus = Verbindungsstatus
NETWORK_CONTROLLER.autoSense = auto-sense
AUDIO_CONTROLLER = Audiokarte
IDE_CONTROLLER = IDE-Controller
SCSI_CONTROLLER = SCSI-Controller
FLOPPY_CONTROLLER = Floppy-Controller
USB_CONTROLLER = USB-Controller
1394_CONTROLLER = 1394-Controller
PCMCIA_CONTROLLER = PCMCIA-Controller
VIDEO_CONTROLLER = Grafikkarte
VIDEO_CONTROLLER.videoProcessor = Video-Prozessor
VIDEO_CONTROLLER.adapterRAM = Video-Speicher
DRIVE.size = Größe
FLOPPY_DRIVE = Floppylaufwerk
TAPE_DRIVE = Bandlaufwerk
HARDDISK_DRIVE = Festplatte
HARDDISK_DRIVE.cylinders = Cylinder
HARDDISK_DRIVE.heads = Heads
HARDDISK_DRIVE.sectors = Sektoren
HARDDISK_DRIVE.partitions = Partitionen
DISK_PARTITION = Partition
DISK_PARTITION.size = Größe

119

9. opsi data storage (backend)

DISK_PARTITION.startingOffset = Start-Offset
DISK_PARTITION.index = Index
DISK_PARTITION.filesystem = Dateisystem
DISK_PARTITION.freeSpace = Freier Speicher
DISK_PARTITION.driveLetter = Laufwerksbuchstabe
OPTICAL_DRIVE = Optisches Laufwerk
OPTICAL_DRIVE.driveLetter = Laufwerksbuchstabe
MONITOR = Monitor
MONITOR.screenHeight = Vertikale Auflösung
MONITOR.screenWidth = Horizontale Auflösung
KEYBOARD = Tastatur
KEYBOARD.numberOfFunctionKeys = Anzahl Funktionstasten
POINTING_DEVICE = Zeigegerät
POINTING_DEVICE.numberOfButtons = Anzahl der Tasten
PRINTER = Drucker
PRINTER.horizontalResolution = Vertikale Auflösung
PRINTER.verticalResolution = Horizontale Auflösung
PRINTER.capabilities = Fähigkeiten
PRINTER.paperSizesSupported = Unterstützte Papierformate
PRINTER.driverName = Name des Treibers
PRINTER.port = Anschluss

Examples for queries:

Complete hardware inventory ordered by clients and devices:
select
HOST.hostId,HARDWARE_INFO.*
from
HOST,HARDWARE_INFO
where
(HOST.host_id = HARDWARE_INFO.host_id)
ORDER BY
HOST.hostId,HARDWARE_INFO.hardware_class,HARDWARE_INFO.config_id
Complete hardware inventory of one client ordered by devices:
select
HOST.hostId,HARDWARE_INFO.*
from
HOST,HARDWARE_INFO
where
(HOST.host_id = HARDWARE_INFO.host_id)
and HOST.hostId = 'pcuwb03.uib.local'
ORDER BY
HOST.hostId,HARDWARE_INFO.hardware_class,HARDWARE_INFO.config_id
Listing of all harddrives:
SELECT * FROM HARDWARE_DEVICE_HARDDISK_DRIVE D
LEFT OUTER JOIN HARDWARE_CONFIG_HARDDISK_DRIVE H ON
D.hardware_id=H.hardware_id ;

120

9. opsi data storage (backend)

9.3.2. Initializing the MySQL-Backend

First, the mysql-server has to be installed (if not done yet):
apt-get install mysql-server
In the next step the administrative password for the mysql-server has to been set:
mysqladmin --user=root password linux123
Using the script /usr/share/opsi/init-opsi-mysql-db.py you may now initialize the MySQL-
Backend.

A example session:
svmopside:/usr/share/opsi# ./init-opsi-mysql-db.py
**
*
* This tool will create an initial mysql database for use as opsi backend.
*
* The config file /etc/opsi/backendManager.d/21_mysql.conf will be recreated.
*
* =>>> Press <CTRL> + <C> to abort <<<=
*
**
*
 Database host [localhost]:
 Database admin user [root]:
 Database admin password [password]:
 Opsi database name [opsi]:
 Opsi database user [opsi]:
 Opsi database password [opsi]:
Connecting to host 'localhost' as user 'root'
Creating database 'opsi' and user 'opsi'
Testing connection
Connection / credentials ok!
Creating mysql backend config file /etc/opsi/backendManager.d/21_mysql.conf
Creating opsi base
Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
50
Using type varchar(100) for property 'name'
Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
60
Using type varchar(100) for property 'name'
Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
50
Using type varchar(100) for property 'name'
Got duplicate property 'location' of same type 'varchar' but different sizes:
50, 10
Using type varchar(50) for property 'location'
Got duplicate property 'name' of same type 'varchar' but different sizes: 100,
50
Using type varchar(100) for property 'name'

121

9. opsi data storage (backend)

At all questions (beside the password) you may accept the defaults by pressing ENTER.

Warnings at the end of the script should be ignored.

In the file /etc/opsi/backendManager.d/30_vars.conf is defined which backend is used
for which part of opsi. In order to use the MySQL backend, the inventory of hard- and
software has to be assigned to BACKEND_MYSQL in this file, no matter which backend
is used otherwise.
self.swinventBackend = BACKEND_MYSQL
self.hwinventBackend = BACKEND_MYSQL
After changing the backend configurationthe opsiconfd must be restarted:
/etc/init.d/opsiconfd restart

9.4. Conversion between different backends

The command opsi-convert converts the opsi configuration files from one backend
to another. The target or the source can be assigned in different ways:

● Backend name
A backend on the current server can be addressed with just the backend name.
The command 'opsi-convert File File31' converts the data base of the
current server from File-Backend to File31-Backend.

● Service address
Providing a full qualified service address allows access to a remote servers data
base (after passing the users password). The service address looks like:
https://<username>@<ipadresse>:4447/rpc
The conversion command looks like that:
opsi-convert -s -l /tmp/log https://uib@192.168.2.162:4447/rpc \
https://opsi@192.168.2.42:4447/rpc

● Configuration directories
With a declaration of a configuration directory for the specified backend manager
configuration source or target can be described in detail.

122

9. opsi data storage (backend)

9.5. Boot files

'/tftpboot/linux' contains the boot files needed for the system start with the PXE-
Bootproms.

9.6. Securing the shares with encrypted passwords

The installation software 'opsi preLoginLoader' accesses the shares provided by the
depot server in order to install software and to write configuration information and log
files. This is done with the privileges of the system user 'pcpatch'. Securing these
shares and therefore the authentification data of 'pcpatch' is important for two reasons:

● general system security and data integrity

● meet the license agreements of special software packets

To give the client task 'preLoginLoader' access to authentication data, the server task
'reInstallationManager' creates a specific key when preparing a client re-installation
request. This key is stored in the file '/etc/pckeys' and is passed to the PC with the
reinstallation request. The client PC will store this key in the local file
'c:\opsi\cfg\locked.cfg' during system installation (access rights limited to the
administrators). Also, on the server, the file '/etc/pckeys' is only accessible by user root.
This way every PC has got an unique key only known to the client itself and the depot
server, not accessible by client standard users. The key is used to encrypt the password
of the user 'pcpatch'. The encrypted password will be transferred to the client at boot
time via webservice. Hence the servers 'pcpatch' password can be changed any time.
The new encrypted password will be sent to every client at the next reboot.

123

10. Adapting the opsi preloginLoader to your Corporate Identity (CI)

10. Adapting the opsi preloginLoader to your Corporate Identity (CI)

wInst as part of the opsi preloginLoader is the program which executes the wInst-scripts
and installs the software packets on the client according to the clients configuration
data. During the product installation the installation progress is shown full screen on the
clients display. You can configure the look with the file
'<utils share>\utils\wInst_p.ini'
to change the logo or the colors to integrate your corporate identity (CI).

The typical 'wInst_p.ini' looks like this:
picture1=wInst2.bmp
label1="uib gmbh"
picture2=wInst1.bmp
label2="opsi – Open Pc ServerIntegration"
;available colors: blue, aqua, green, lime, maroon, navy, teal, white, yellow,
olive; default: blue; (or color code)
backgroundcolor=
textcolor=

Also the 'netmount' start window can be adapted, which is shown while connecting the
file shares, before the software installation starts. You can change the registry values of
'bitmap1' and 'bitmap2' in the registry key
'HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\pcptch' to your preferred logo. The
labels for the logo can be set by 'label1' and 'label2' in the same registry key. If no
logos should be shown, set the registry value 'loadbitmap' to '0'. The variable
'backgroundcolor' is for adapting the background color of the window. The value of
'textcolor' sets the foreground color (text color). You find the available colors in the
example above (taken from 'wInst_p.ini').

Those registry values can also be managed via the network configuration. The effects
of these changes (for technical reasons) are visible after the second re-boot of the
client.

124

11. Overview: A PC boots from the network

11. Overview: A PC boots from the network

Again the first action is the bootprom sending its DHCP-request to the network.

In case of a boot without an OS (re)installation the bootimage cannot get a PC-specific
'01-<MAC>'-file, instead the default file is loaded and initiates a local boot. During the
startup of the OS, the OS will again request an IP and the usual network configuration
information from the DHCP-server.

125

Figure 27: Flowchart for a 'regular' PXE-boot without re-installation, but with the start of
the opsi preLoginLoader

PXE-Bootprom active

PC gets IP, server and
bootfilename

Linux-BootImage
defaut = hdboot:

from hosts,
dhcpd.conf

Depot-server
dhcp-request

TFTP-request
for bootfile

dhcp-request

PC gets IP...

smb-request:
path /opt/pcbin/...

from hosts,
dhcpd.conf

from opsi-config-file

Winst (installation?)

PC/Client network-boot

User is allowed to login.

mounting
/opt/pcbin/...

Service prelogin.exe
starts pcptch.exe

starting Win2k

12. Important files on the depot servers

12. Important files on the depot servers

12.1. Configuration files

12.1.1. Configuration files in /etc

12.1.1.1. /etc/hosts

The hosts file stores all IP addresses and IP names known to the network. The IP
addresses and names of all clients have to be entered here. The names have to be 'full
qualified', inclusing the domain name. There might be aliases (additional names) and
comments (starting with '#').

Example:

192.168.2.104 laptop1.uib.local laptop1
192.168.2.106 laptop2.uib.local laptop2 # you can enter comments here
192.168.2.153 desktop1.uib.local desktop1
192.168.2.178 test_pc1.uib.local test_pc1 # Test-PC PXE-bootprom

12.1.1.2. /etc/group

The required opsi groups are 'pcpatch' and 'opsidamin'. All users who are administrating
opsi packets need to be member of the 'pcpatch' group. Membership of the group
'opsiadmin' allows users to connect to the opsi web service (for instance using the opsi--
Configed or the applet).

12.1.1.3. /etc/opsi/pckeys

In this file the keys for the re-Installation manager, specified for each computer, are
stored.

Example:
laptop1.uib.local:fdc2493ace4b372fd39dbba3fcd62182
laptop2:c397c280fc2d3db81d39b4a4329b5f65
desktop1.uib.local:61149ef590469f765a1be6cfbacbf491

126

12. Important files on the depot servers

12.1.1.4. /etc/opsi/passwd

Here the passwords encrypted with the server key of the server (e.g. for pcpatch) are
kept.

12.1.1.5. /etc/opsi/backendManager.conf

Deprecated since opsi 3.1 and replaced by '/etc/opsi/backendManager.conf.d/*',

Configuration file for the opsiconfd specifying which backend (File/LDAP) will be used,
where the data storage is and what commands are bound to what actions.

12.1.1.6. /etc/opsi/backendManager.conf/*

Since opsi version 3.1

Configuration files for the 'opsiconfd' service defining
- which backend (File/LDAP) to use,
- where to store the data files,
- which commands are bound to what action,
- the list of available service requests.

The *.conf files of this directory in alphabetic order will be combined to one single file at
run time to build the backendManager.conf. Also custom specific files can be included
to override the default settings (without losing this information at the next update).

12.1.1.7. /etc/opsi/hwaudit/*

Since opsi V3.2

Here the configuration files for the hardware inventory are to be found. The directory
'locales' holds the language specifications. The file 'opsihwaudit.conf' specifies the
mapping of WMI classes to the opsi data management.

12.1.1.8. /etc/opsi/opsiconfd.conf

Since opsi V3

127

12. Important files on the depot servers

Configuration file for the 'opsiconfd' service including configurations like ports,
interfaces, logging.

12.1.1.9. /etc/opsi/opsiconfd.pem

Since opsi version 3.0

Configuration file for the 'opsiconfd' holding the ssl certificate.

12.1.1.10. /etc/opsi/opsipxeconfd.conf

Configuration file for the 'opsipxeconfd' in charge for writing the startup files for the
Linux-bootimage. You can configure directories, defaults and log level here.

12.1.1.11. /etc/opsi/version

Holds the version number of the installed opsi.

12.1.1.12. /etc/init.d/

Start and stop scripts for

● opsi-atftpd

opsiconfd

opsipxeconfd

12.2. Boot files

12.2.1. Boot files in /tftpboot/linux

12.2.1.1. pxelinux.0

Bootfile which will be loaded first by the PXE-bootprom.

128

12. Important files on the depot servers

12.2.1.2. install und miniroot.gz

Installation bootimage which will be loaded by the client (per tftp) during a re-installation.

12.2.2. Boot files in /tftpboot/linux/pxelinux.cfg

12.2.2.1. 01-<MAC address> or <IP-NUMBER-in-Hex>

Files named by the clients hardware address (prefix 01-) are stored on the depot server
as client-specific boot files. Usually they are named pipes created by the re-
InstallationManager as to initiate the (re)installation of clients.

12.2.2.2. default

The file 'default' is loaded if no client-specific file is found. This initiates a local boot.

12.2.2.3. install

Information for the boot of the install boot image which will be used by the opsi-re-
installationManager to create the named pipe.

12.3. Files of the File-Backend

Attention: opsi can be configured in many ways. The file locations as documented here
are the opsi defaults. The actual locations are to be found in the
/etc/opsi/backendManager.conf.d/* configuration files.

12.3.1. File3.1-Backend

12.3.1.1. Overview

The files of the 'File31 backend' are in '/var/lib/opsi', which is the home directory of the
opsiconf-daemons. The following schema gives an overview of the directory structure.

129

12. Important files on the depot servers

/var/lib/opsi┐
 ├─depot/ (for future use: depotshare)
 ├─log/ (for future use: logshare)
 ├─utils/ (for future use: utilsshare)
 ├─config/┐ configshare
 ├─clientgroups.ini Client groups
 ├─global.ini network and additional config
 ├─clients/ (<pcname.ini> files)
 ├─templates/ (templates for <pcname.ini>
 ├─depots/┐
 ├─<depotid>/┐
 ├─depot.ini
 ├─products/┐
 ├─localboot/┐
 │ (product control
 │ files)
 └─netboot/┐
 (product control
 files)

● Logging and hard- and software inventory
The hardware information sampled by the product 'hwaudit' or the bootimage are
saved as '<configshare>/pclog/<pcname>.hw'.
The software information sent from the product 'swaudit' is saved as
'<configshare>/pclog/<pcname>.sw'.

12.3.1.2. Configuration files in '/var/lib/opsi/config'

12.3.1.2.1. clientgroups.ini

This file holds information on the client-groups.

[groupname]
membername
membername
(....)

Example
[group 3]
pca26
pca39
pcmeyer

12.3.1.2.2. global.ini

130

12. Important files on the depot servers

This file contains the default settings of the sections [networkconfig] and
[generalconfig] for the client configuration. Client specific values from
'<pcname>.ini' will override these default values. The inner structure of these sections is
the same as described in the next chapter for '<pcname>.ini'.

12.3.1.3. Configuration files in /var/lib/opsi/config/clients

12.3.1.3.1. <pcname>.ini

In these files the client specific configuration is set. This information will be combined
with the 'global.ini' values whereas the settings from '<pcname>.ini' overrides the
'global.ini' setting.

These files can have the following sections:

12.3.1.3.1.1. [generalconfig]

In this section are the general client entries. Values from this section will be transferred

by the service request 'getGeneralConfig_hash' and the bootimage to patch the

configuration files entries.

Example:

pcptchbitmap1 = wInst1.bmp
pcptchbitmap2 = wInst2.bmp
pcptchlabel1 = opsi
pcptchlabel2 = uib gmbh
Icons and labeling of the pcpatch.exe 'netmount' window

SecsUntilConnectionTimeOut = 120
Timeout of pcptch.exe ('netmount' window) – if no server connection is available
button_stopnetworking=immediate
The 'netmount' window should present the 'cancel'-button right from the start
test = 123
any user defined keys

os = winxppro
Default value for operating system installation

131

12. Important files on the depot servers

12.3.1.3.1.2. [networkconfig]
depoturl=smb://<smbhost>/<sharename>/<path>
configurl=smb://<smbhost>/<sharename>/<path>
utilsurl=smb://<smbhost>/<sharename>/<path>

The URL consists of three parts:

1. Protocol: Currently only the 'smb' protocol is supported.

2. Share name (for instance '\\laptop\opt_pcbin'): This share will be mounted. In case of
a drive letter given further down in this file, the share is mounted as this drive.

3. The path where the installation software is stored.
depotdrive=<drive letter the depoturl will be mounted as>
Example: P: (including the colon)
configdrive=<drive letter the configurl will be mounted as>
Example: P: (including the colon)
utilsdrive=<drive letter the utilsurl will be mounted as>
Example: P: (including the colon)
nextbootservertype = service
The client can work with the opsi-service or with direct data access ('classic' mode).

Classic mode is available with the 'File' backend only, but not with the 'File31' or 'LDAP'

backend. The client will retrieve that value and save it as

'[HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\pcptch] opsiServerTyp'.

nextbootserviceurl = https://192.168.1.14:4447
This is the URL the client connects to the opsi service running on the server. Attention:

If there is a name and not an IP-number, the name must be resolvable by the client.

The value will be retrieved by the client and saved as

'[HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\pcptch] opsiServiceUrl'.

windomain = dplaptop
This is the name of the Samba(Windows)-domain

132

12. Important files on the depot servers

12.3.1.3.1.3. [localboot_product_states]

Replaces the deprecated section [products-installed] and looks like:

<productid> = <installation state> : <required action>
e.g.
firefox = installed:setup

12.3.1.3.1.4. [netboot_product_states]
<productid> = <installation state> : <required action>
e.g.
winxppro = installed:none

12.3.1.3.1.5. [<product>-state]

This section holds information on every software packet installed on the client including

time stamp of installation.

laststatechange = <timestamp>
packageversion = <value>
productversion = <value
e.g.
laststatechange = 20070525105058
packageversion = 1
productversion = 2.0.0.3

12.3.1.3.1.6. [<product>-install]
product property = value
e.g.
viewer = off

12.3.1.3.1.7. [info]

The client information from the opsi-configed will be saved to the 'info' section. Also will
be recorded here the last time the client connected the 'opsiconfd' service.
[info]
notes =
description = detlef
lastseen = 20070105090525

133

12. Important files on the depot servers

12.3.1.4. Configuration files in /var/lib/opsi/config/templates

In this directory are the template files like 'pcproto.ini', which is the standard template for
creating a new <pcname>.ini file. It has the same internal structure as the <pcname>.ini
file.

12.3.1.5. Configuration files in /var/lib/opsi/config/depots/<depotid>

In this place is the file 'depot.ini', which is the configuration file of the opsi depot (where
on the server the depot is located and how to connect it).
[depotShare]
urlForClient = smb://dplaptop/opt_pcbin/install
urlForConfigServer = file:///opt/pcbin/install
[depotServer]
operatingSystem = Linux

12.3.1.6. Product control files in /var/lib/opsi/config/depots/<depotid>/products

This directory contains the subdirectories 'localboot' and 'netboot', where the control-
files of the respective products are located. The subdirectories contain the product meta
data, which is the product name, properties, default values and dependencies.

The control files are the kind of control files, that are generated by creating new opsi-
products in the directory '<product name>/OPSI/control'.

The control files have the following sections:

● Section [Package]
Description of the package version and whether this is an incremental package.

● Section [Product]
Description of the product

● Optional section(s) [ProductProperty]
Description of variable product properties

● Optional section(s) [ProductDependency]
Description of product dependencies

134

12. Important files on the depot servers

Example:
[Package]
version: 1
depends:
incremental: False
[Product]
type: localboot
id: thunderbird
name: Mozilla Thunderbird
description: Mail client of Mozilla.org
advice:
version: 2.0.0.4
priority: 0
licenseRequired: False
productClasses: Mailclient
setupScript: thunderbird.ins
uninstallScript:
updateScript:
alwaysScript:
onceScript:
[ProductProperty]
name: enigmail
description: Install encryption plugin for GnuPG
values: on, off
default: off
[ProductDependency]
action: setup
requiredProduct: mshotfix
requiredStatus: installed
requirementType: before

● [Package]-'Version' is for different package versions from the same product
version. This helps to distinguish packages build from the same product version
but with different wInst-script for instance.

● [Package]-'depends' refers to the base package of an incremental package.

● [Package]-'Incremental' specifies whether this is an incremental package.

● [Product]-'type' marks the product type as localboot or netboot.

● [Product]-'Id' is the general name of that product (like 'firefox'), independent from
the product version (with opsi 2 this is called the 'product name').

● [Product]-'name' is the full name of the product.

135

12. Important files on the depot servers

● [Product]-'Description' is an additional description for the product as shown in the
opsi-Configeditor as 'Description'.

● [Product]-'Advice' is an additional hint for handling the product (caveats etc.) as
to be shown in the opsi-Configeditor as 'Note'.

● [Product]-'version' is the version of the original software.

● [Product]-'Priority' is for future use (regarding the installation order).

● [Product]-'class' is for future use.

● [ProductProperty]-'name': Name of a properties.

● [ProductProperty]-'description': Description of the properties (shown as tool tip in
opsiconfiged).

● [ProductProperty]-'values' : List of allowed values. If empty, the value is free
editable.

● [ProductProperty]-'default' : Default value of the property.

● [ProductDependency]-'Action' : To which product action this dependency entry
belongs (setup, deinstall ...).

● [ProductDependency]-'Requiredproduct': Product ID of the product a dependency
exists.

● [ProductDependency]-'Required action': The required action of the product,
which the dependency entry refers to. Actions could be setup, deinstall, update...

● [ProductDependency]-'Required installation status': The required status of the
product, which the dependency entry refers to. Typically this is 'installed', which
results in setting this dependency product to setup, if it isn't installed on the client
yet.

● [ProductDependency]-'Requirement type': this is regarding the installation order.
If the product, which the dependency entry refers to, has to be installed before
the actual product installation starts, the 'Requirement type' must be 'before'. If

136

12. Important files on the depot servers

the dependency product has to be (re-)installed after the actual product, the
'Requirement type' is set to 'after'. If there is no entry, the installation order is of
no relevance.

12.3.2. File-Backend (opsi 2.x/3.0)

This backend is 'deprecated' and only for backward compatibility.

12.3.2.1. Configuration files in /tftpboot/opsi

Since opsi-version 2.5 entries in the '*.sysconf'-files are case sensitive.

12.3.2.1.1. *.sysconf-files

The '*.sysconf'-files contain information which is applied during the OS-installation
and/or at client startup. The internal file structure is like 'ini'-files.

The content of the sections [general] and [shareinfo] is retrieved by the bootimage and
saved on the client as the file 'sysconf.ini' in the 'cfg'-directory of the 'Preloginloader'.
The data is also written to the file 'patcha.ini', which is used for patching other
configuration files.

12.3.2.1.2. global.sysconf
[General]
depoturl=smb://smbhost/sharename/path
configurl=smb://smbhost/sharename/path
utilsurl=smb://smbhost/sharename/path

The URL consists of three parts:

1. Protocol: Currently only smb is supported.

2. Share name (\\laptop\opt_pcbin): This is the share to be mounted. In case of a
drive letter given further down in this file, the share is mounted as this drive letter.

3. The path, in which the software installation packages are stored.
depotdrive=<driveletter the depoturl is mounted to>
Example: P: (including the colon)

137

12. Important files on the depot servers

configdrive=<driveletter the configurl is mounted to >
Example: P: (including the colon)
utilsdrive=<driveletter the utilsurl is mounted to >
Example: P: (including the colon)
OS=Win2k
OS to be installed by default.
[shareinfo]
pcpatchpass=a788f2614d04ddd435e08418ec97e130
Encrypted password for the user 'pcpatch' (only available if there is a value for 'global' in
'/etc/pckeys'). Will be overridden by an entry in the 'pcname.sysconf'.

Product sections, as an example for win2k:
[Win2k]
Informations about the client OS Windows 2000
extendoem=10240
Size (MB) of the NTFS partition to be created.
0=keep old size. 1=use all of the available space.
insturl=smb://smbhost/sharename/path
URL referring to the directory containing the installation and config files.
Example: os-instpath=smb://schleppi/opt_pcbin/install/win2k
instscript=win2k.py
OS Installation-script (executed by the boot image for this OS).
askBeforeInst=false
Defines whether the bootimage waits for reinstallation approval by the user or starts the
installation without questioning. Is this entry missing or anything else than 'false' , '0' or
'no', a confirmation request is executed. This entry since opsi V2.5 is in the product
section (it was expected to be in the [general] section before).
[WinXP]
The next section holds the configuration information for WinXP.

12.3.2.1.3. domain.sysconf

For future use (will store domain specific information).

138

12. Important files on the depot servers

12.3.2.1.4. <pcname>.sysconf

Since opsi-version 2.5 no definitions regarding the operating system are allowed in this
file. It has to be written to the 'global.sysconf'.
[shareinfo]
pcpatchpass=a788f2614d04ddd435e08418ec97e130
Encrypted password for the user 'pcpatch' (for connecting the installation share).
[General]
OS=Win2k
OS to be installed on this client.
[Win2k]
extendoem=10240
.....
Information for Windows 2000
[WinXP]
ProductKey=0815123
.....
Information for Windows XP

12.3.2.2. Configuration files in the opsi config and utils file shares

12.3.2.2.1. Function and configuration of <pcname>.ini files

For every client computer exists a configuration file to control the software distribution.
These files are stored at the configuration share (per default this is '/opt/pcbin/) of the
opsi depot servers in the subdirectory 'pcpatch'. The name of the configuration file is
the IP-name of the computer with the extension '.ini'.

Example:
/opt/pcbin/pcpatch/pcmueller.ini.

These text files have the structure of INI-files. The section [products-installed] lists all
the software packets which are available at the opsi depot server. Each software
packets has a switch setting which represents the status of that software on the client.

Example:
[products-installed]
mozilla=off
firefox=on

139

12. Important files on the depot servers

The switch settings for every product have the following meaning:

setup: Product will be installed at the next boot (then the switch is set to 'on')
on: Product is installed - no action required
off: Product isn't installed on the computer - no action required
deinstall: Product will be deinstalled at the next boot (then switch to 'off')
update Product will be updated at the next boot (then switch to 'on')
always Product install script will execute at every boot (stays as 'always')
once Product install script will execute one time only (and than switch to 'off')

(whereas 'setup' will switch to status 'on')

At every boot the switch setting will be checked by the program wInst. If there is an
action request, the appropriate script will be executed to install, uninstall or update the
software packet and then the switch is set to the resulting status.

If there is no config file for a PC it will be created from the prototype file 'pcproto.ini'. So
you should configure the 'pcproto.ini' to have the standard software packets set to 'on'.

To change these files you need a Unix user account at the opsi depot server and you
should be member of the unix group 'pcpatch'.

Example for a <pcname>.ini file:
[Products-installed]
acroread=on
virdat=on
mozilla=on
perl=on
virscan=on
javavm=on
citrix_c=off
ooffice=on
integtools=off
tightvnc=off
jedit4_1=off
[mozilla-install]
disable_ntlm=off
prefbar=on
calendar=on
open_eml=on

 The client information from the opsi-configurator is saved in the section [info].
Also the last client connect to the opsiconfd will be saved.

[info]
notes =
description = detlef
lastseen = 20070105090525

140

12. Important files on the depot servers

 In the section [netbootproducts-states] the status and action request for
netboot products will be saved the way described for the File31 backend.

12.3.2.2.2. Software-product-information file: produkte.txt

Example:
; Filename: produkte.txt
; lists product-dependencies (product-requires-Sections,
; product-requires_before-sections, product-requires_after-sections)
; short descriptions of products (produkt-info-sections)
; Some of the keywords are currently in German
; Produktname -> product name
; Infotext -> info text
; Hinweis -> additional advice
[acroread-info]
Produktname=Acrobat Reader 5.1
Infotext=for mozilla
Hinweis=removes Acrobat Reader V3.4
[virscan-requires_before]
nt4sp6a=on
[virdat-info]
Produktname=virdat: Actual virus signature files
Infotext=signature files V4
[mozilla-info]
Produktname=Mozilla 1.6
Infotext=Mozilla 1.6 including customising tool
Hinweis=Additional switches for calendar, prefsbar and handling of .eml-files
[perl-requires]
mozilla=on
[perl-info]
Produktname=ActivePerl from ActiveState
Infotext=ActivePerl 5.6.1.631 MSWin 32
Hinweis=
[virscan-info]
Produktname=virscan: Virenscanner V7.1.0
Infotext=Network Associates VirusScan v7.1.0
Hints=The actual signature files are in the product virdat
[javavm-info]
Produktname=1.3.1_07 / 1.4.1_02
Infotext=This product installs two different JavaVM
Hints=The switch default13=on (default) installs javavm 1.3 as default
[citrix_c-info]
Produktname=Citrix client 6.31.1051(128-Bit SSL)
Infotext=Terminal client for Citrix WTS

141

12. Important files on the depot servers

[mozilla-requires]
hupsutil=on
[mozilla-requires_after]
javavm=setup
acroread=setup
[ooffice-info]
Produktname=OpenOffice 1.1.1
Infotext=
Hinweis=
[ooffice-requires_before]
javavm=on
[integtools-info]
Produktname=integtools: integrationstools V.6.12.2003
Info text=some tools to create wInst scripts
Hinweis=
[jedit4_1-info]
Produktname=jEdit 4.1
Infotext=Open Source Editor (Java) with syntax highlighting and plugins
Hinweis=Java Engine at least Version 1.4 recommended
[jedit4_1-requires]
javavm=on
[jedit4_1-requires_before]
javavm=on
[tightvnc-info]
Produktname=tightvnc 1.2.9: remote control of computers (compressed transfer)
Infotext=Standard installation
Hinweis=GUI English
[virscan-requires_after]
virdat=setup
[virdat-requires_before]
virscan=on
[ie6-requires_before]
nt4sp6a=on
[vobsutil-requires_before]
javavm=on

12.3.2.2.3. Software-product-path and script-information: pathnams.ini

Example 'pathnams.ini':
;Remark: This file contains all general product related entries
; (which are not specific for a single PC)
; In combination with <pcname>.ini this will configure the PC

142

12. Important files on the depot servers

[acroread-install]
setupPath=p:\install\acroread
setupWinst=acroread.ins
[virdat-install]
setupPath=p:\install\virdat
setupWinst=virdat.ins
[vnc-install]
setupPath=p:\install\vnc
setupWinst=vnc.ins
[mozilla-install]
setupPath=P:\install\mozilla
setupWinst=mozilla.ins
deinstallWinst=delmoz.ins
[perl-install]
setupPath=p:\install\perl
setupWinst=perl.ins
[virscan-install]
setupPath=p:\install\virscan
setupWinst=virscan.ins
(....)

12.3.2.3. Help files produkte.txt and pathnams.ini

Apart from the client specific software configuration file ('<pcname>.ini') there are two
other configuration files with information regarding the installation of software packets.
These files are patched automatically by installing opsi packets on the server. Usually
the administrator will not have to edit them.

In the file 'pathnams.ini' (default is '/opt/pcbin/pcpatch/pathnams.ini') for every product is
defined where the program wInst will find the installation script. If there is also an
uninstall or an update script, the script path is written to this file.

In the file 'produkte.txt' (default is '/opt/pcbin/utils/produkte.txt') are important additional
product informations saved. You can see those informations from the ini-editor. You
also see the information about the product dependencies. Product dependencies are
evaluated bei wInst and affect the installation order of products. The dependency types
are:

143

12. Important files on the depot servers

• Product A 'requires' product B:

the operation of product A is based on product B. So, if product A is to be

installed, product B must be installed also.

• Product A 'requires_before' product B:

already the installation of product A requires the presence of product B. So

product B has to be installed before the installation of product A can be started.

• Product A 'requires_after' the installation of product B:

Even if product B is already installed, it has to be installed (again) after the

installation of product A is completed (for instance product B installs plugins for

product A).

The detailed syntax of this file is described in the 'opsi integration handbook'.

12.4. Files of the LDAP-backend

The opsi-LDAP schema is located in the directory
/etc/ldap/schema/opsi.schema.

12.5. Opsi programs and libraries

12.5.1. Python library

The opsi python modules are located at:

/usr/lib/python2.3/site-packets/OPSI/

or

/usr/share/python-support/python-opsi/OPSI

12.5.2. Programs in /usr/sbin

opsiconfd
opsi configuration daemon

144

12. Important files on the depot servers

opsipxeconfd
opsi daemon to administrate the files required for the PXE-boot of the clients.

12.5.3. Programs in /usr/bin

● opsi-admin
Starts the command line interface for the opsi python library

● opsi-configed
Command to start the opsi-management interface

● opsi-convert
Script for converting between different backends.

● opsideinst
(depricated - replaced by opsi-package-manager) Script for deleting products

● opsiinst (opsiinstv2)
(depricated - replaced by opsi-package-manager) Script to unpack and install
opsi packets on the server

● opsi-makeproductfile (opsi-makeproductfilev2)
Script for packing the opsi-packet (opsiV2 compatible Version)

● opsi-newprod
Script for creating a new opsi product

● opsi-package-manager
Script to unpack, install, remove, list opsi packets on one ore more servers.

● makeproductfile (makeproductfilev2) (deprecated)
Replaced by opsi-makeproductfile
Script for packing the opsi-packet (opsiV2 compatible Version)

● newprod (deprecated)
Replaced by opsi-newprod
Script for creating a new opsi product

145

12. Important files on the depot servers

● sysbackup
System backup (to tape or disc)

● winipatch
Script for patching INI-files

12.6. opsi-log files

12.6.1. /var/log

The opsi reInstallationManager logs to '/var/log/syslog'.

12.6.2. /var/log/opsi/opsiconfd

In this directory are the log-files of the opsiconfd and the clients. The client log files will
be named 'log.<IP-number>' and (if available) a symbolic link named 'log.<IP-name>' to
'log.<IP-number>' is created.

12.6.3. /var/log/opsi/bootimage

In this directory are the log-files of the opsi-bootimage. These log files will be named
'log.<IP-number> If the boot image couldn't connect the webservice, the logs are written
to '/tmp/log' at the bootimage.

12.6.4. /var/log/opsi/opsipxeconfd

This is the log file of the opsipxeconfd, that administrates the tftp files for the PXE boot
of the clients.

12.6.5. Software installation (c:\tmp)

The logging of the opsi preloginloader service 'prelogin.exe' is managed by the registry
entry '[HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\preloginloader] DebugOutput'.
Usually it is set to '0', which means 'no logging'. For debugging it can be set to 1 (some
logging), 2, 3 or 4 (verbose logging). The logs are shown in the Windows event viewer
in the opsi section.

The netmount program 'pcptch.exe' logs to 'c:\tmp\logonlog.txt'.

146

12. Important files on the depot servers

The opsi-wInst writes a detailed log of its current activities to 'c:\tmp\instlog.txt'. This will
be overwritten at the next start. The cumulative error log file is 'c:\tmp\instlog.err' and
can be configured to under the name instlog.txt in c:\tmp. The error log can be
configured to be written to the config share as '<configshare>/pclog/<pcname>.err' or to
transfer the error logs per syslog protocol to a log server.

147

13. Registry entries

13. Registry entries

13.1. Registry entries for the opsi-preLoginLoader

13.1.1. opsi.org/general

The following entries will be found in the registry at [HKLM/Software/opsi.org/general].
configlocal = <0/1> (dword)

If 'configlocal=0' all the following keys are updated at every boot with information from
the sysconf files. The sysconf files are retrieved by the client at every boot from the
server via tftp. So the client needs to know the address of the tftpserver:
tftpserver = <server to get the configuration files from>

13.1.2. opsi.org/shareinfo

The following registry entries are stored in [HKLM/Software/opsi.org/shareinfo]:
user = <user to mount the shares>
Example for user: pcpatch

pcpatchpass = <blowfish encrypted password for user pcpatch>
depoturl = <URL for installation packets>
; depoturl pattern: <protocol>:\\<server>\<share>\<dir>

Example for depoturl: smb:\\laptop\opt_pcbin\install

The URL consists of three parts:

1. Protocol (smb): Currently only smb is supported.

2. Share (\\laptop\opt_pcbin): This is the share to be mounted. If a drive letter is given
for this share the share is mounted to this drive letter.

3. Directory in which the software packets are stored.
Configurl = <URL to the configuration files>
; the configuration files are the <pcname>.ini files
; configurl pattern: <protocol>:\\<server>\<share>\<dir>

148

13. Registry entries

Example for configurl: smb:\\laptop\opt_pcbin\pcpatch
Description: (same structure as depoturl)
utilsurl = <URL to the utils directory>
; the utils directory contains the client opsi utilities
; like Winst.exe
; utilsurl pattern: <protocol>:\\<server>\<share>\<dir>
Example: smb:\\laptop\opt_pcbin\utils

Description: (same as depoturl)

depotdrive = <drive letter the depoturl will be mounted to>
Example: P: (including the colon)
configdrive = <drive letter the configurl will be mounted to>
Example: P: (including the colon)
utilsdrive = <drive letter the utilsurl will be mounted to>
Example: P: (including the colon)

Configuration values for 'pcptch.exe' in [HKLM/Software/opsi.org/pcptch]

● mountdrive (DWORD) 0=false, 1=true (default 1)

● label1 (String) caption for first image (if empty defaults to "PC-Server-Integration")

● label2 (String) caption for second image (if empty defaults to “uib”)

● Bitmap1 (String) is the name of the first image (BMP file, relative to the path of
pcptch.exe, default is 'wInst1.bmp')

● Bitmap2, same as bitmap1for the second image (default is 'wInst2.bmp')

13.1.3. opsi.org/preloginloader

The registry key [HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\preloginloader]
has the following values:

"PcPCallMode"=dword:00000001 (deprecated)

"DebugOutput"=dword:00000004
- Eventlog: 0=errors only >=4 = verbose

149

13. Registry entries

"RebootOnBootmodeReins"=dword:00000001
- Reboot if bootmode=REINS

"RebootOnServicePackChange"=dword:00000001
- reboot if servicepack changed

"WaitForPcpExit"=dword:00000000 (deprecated)

"RemoveMsginaOnDeinst"=dword:00000001
- on uninstall restore the default login handler

"UtilsDir"="C:\\opsi\\utils"
- path to the preloginloader files

"PcptchExe"="C:\\opsi\\utils\\pcptch.exe"
- task to start (default is 'pcptch.exe')

"WinstRegKey"="SOFTWARE\\Hupsi\\wInst"
- where to look for wInst registry reboot requests

"LoginBlockerStart"=dword:00000001
- pgina waits for READY from the named pipe
 (if set to 0, the user is allowed to logon during software installation)

"LoginBlockerTimeout"=dword:00000300
- Timeout in minutes for 'wait for ready' (then allow login)

"LoginBlockerTimeoutConnect"=dword:00000005
- Timeout in minutes for pipe-connect

opsi.org/pcptch

Key [HKEY_LOCAL_MACHINE\SOFTWARE\opsi.org\pcptch]

“SecsUntilConnectionTimeOut“=“10“
- wait 10 seconds for a network connection, otherwise continue
- value = 0 -> deactivated

150

13. Registry entries

If the entry “button_stopnetworking” is set to “immediate”, the button to cancel the
network connection will be shown immediately. Laptops (which are most of the time
offline) should be configured as “immediate”, so the installation task (which is trying to
connect the installation share) can be stopped immediately.

opsiServerType
Defines whether 'pcptch.exe' (in opsi 2 mode) should operate file based or
connect to the opsi service.
Possible values are:
classic -> opsi 2 mode
service -> opsi 3 mode

opsiServiceURL
The URL to connect the opsi service
e.g. https://bonifax.uib.local:4447

repeatServiceConnectNo
Number of retries for connecting the service (default 3).

13.2. Registry-entries for opsi-wInst

13.2.1. Controlling the logging via syslog protocol

The relevant registry section is [HKLM\Software\opsi.org\syslogd]

the value of 'RemoteErrorLogging' (DWORD) is evaluated:
RemoteErrorLogging = (0=trel_none, 1=trel_filesystem, 2=trel_syslog);

If logging is set to syslog protocol ("remoteerrorlogging"=dword:00000002), the string
variable 'sysloghost' gives the IP-name of the LogHost.

The DWORD variable 'syslogfacility' defines the source of the syslog messages (default
is ID_SYSLOG_FACILITY_LOCAL0).

The logging source can be:

 ID_SYSLOG_FACILITY_KERNEL = 0; // kernel messages
 ID_SYSLOG_FACILITY_USER = 1; // user level messages

151

13. Registry entries

 ID_SYSLOG_FACILITY_MAIL = 2; // mail system
 ID_SYSLOG_FACILITY_SYS_DAEMON = 3; // system daemons
 ID_SYSLOG_FACILITY_SECURITY1 = 4; // security/authorization messages (1)
 ID_SYSLOG_FACILITY_INTERNAL = 5; // internal mess. generated by syslogd
 ID_SYSLOG_FACILITY_LPR = 6; // line printer subsystem
 ID_SYSLOG_FACILITY_NNTP = 7; // network news subsystem
 ID_SYSLOG_FACILITY_UUCP = 8; // UUCP subsystem
 ID_SYSLOG_FACILITY_CLOCK1 = 9; // clock daemon (1)
 ID_SYSLOG_FACILITY_SECURITY2 = 10; // security/authorization messages (2)
 ID_SYSLOG_FACILITY_FTP = 11; // FTP daemon
 ID_SYSLOG_FACILITY_NTP = 12; // NTP subsystem
 ID_SYSLOG_FACILITY_AUDIT = 13; // log audit
 ID_SYSLOG_FACILITY_ALERT = 14; // log alert
 ID_SYSLOG_FACILITY_CLOCK2 = 15; // clock daemon (2)
 ID_SYSLOG_FACILITY_LOCAL0 = 16; // local use 0 (local0)
 ID_SYSLOG_FACILITY_LOCAL1 = 17; // local use 1 (local1)
 ID_SYSLOG_FACILITY_LOCAL2 = 18; // local use 2 (local2)
 ID_SYSLOG_FACILITY_LOCAL3 = 19; // local use 3 (local3)
 ID_SYSLOG_FACILITY_LOCAL4 = 20; // local use 4 (local4)
 ID_SYSLOG_FACILITY_LOCAL5 = 21; // local use 5 (local5)
 ID_SYSLOG_FACILITY_LOCAL6 = 22; // local use 6 (local6)
 ID_SYSLOG_FACILITY_LOCAL7 = 23; // local use 7 (local7)

152

14. History

14. History

14.1. Differences of opsi version 3 to version 2

14.1.1. Overview (What you should read)

The essentials about new features and technologies of opsi V3 are described in the
following chapters:

This one: 14.1 Differences of opsi version 3 to version 2

Chapter

Chapter 3.2 Tool: opsi V3 opsi-Configed

Chapter 3.3 Tool: opsi V3 opsi-Webconfiged

Chapter 3.5 Tool: opsi V3 opsi-admin

For the new distribution packet format in opsi V3 read the chapter 10.2 in the opsi
integration hand book.

14.1.2. Conceptual

In opsi V2 the complete data storage has been file based. All opsi components
operated directly on these text files.

153

Figure 28: Legacy opsi V2 direct data access

pcname.ini pcname.
sysconf

global
sysconfprodukte.txt

winst32.exe

produkte.txt

pcptch.exe configeditor bootimage

14. History

In opsi V3 the opsi components don't operate directly on the data storage but insteaad
use a web service which is provided by a opsi configuration daemon. Only this daemon
reads and writes to the data storage.

Using this daemon makes it quite easy to use different types of data storages. So
opsi V3 comes with an optional LDAP based data storage.

154

Figure 29: opsi V3 using the web service for data access

pcname.ini pcname.
sysconf

global
sysconfprodukte.txt

winst32.exe

produkte.txt

pcptch.exe configeditor bootimage

opsi configuration daemon

Figure 30: use of different storage systems (LDAP) by the daemon

winst32.exe

LDAP-database

pcptch.exe configeditor bootimage

opsi configuration daemon

14. History

For backward compatibility reasons opsi winst.exe and pcptch.exe also have a 'classic'
mode with direct access to a text file based data storage.

The realization of this concept is done in opsi V3 via a new opsi-Python-Library. This
python based library provides an opsi configuration API which is independent from the
actual type of data storage. This API is also provided by a web service which uses the
JSON standard. This web service is implemented as part of the program opsi-configed.
The program opsi-admin provides a command line interface to the API for shell
scripting.

Another part of the opsi-Python-Library implements the concrete access to the different
types of data storage (backends) which is configured by the backend manager.

14.1.3. Improvement of the handling

Beside the technical changes there are a lot of improvements of the handling of opsi
V3.

● Configuration Editor: opsi-configed

● Group management:

● Multiple selection and configuration of clients

● Save and load different groups of clients for configuration

● Using filters for selecting groups of clients on the fly (by criteria like
installed software)

● WakeOnLAN for selected client groups from within the configuration editor

● Client list may be sorted by name, description and 'last seen by opsi'

● Changed the opsi V2 installation switches into separate status
informations for the actual installation status and the requested action

● Product list may be sorted by installation status and requested action

● The opsi-configed is also provided as web applet

155

14. History

● Improved view on the hardware information

● Simplecreation or deletion of clients

● New packet format for installation of opsi products on the opsi depot servers

● Easy menu driven creation of new packets

● Informations about software version, packet version and custom additions
are stored in the packet. They are also shown by the packet name and in
the destination directory on the depot server. This will help you in your
product life cycle management.

● Creation and installation of opsi packets is now possible without root rights

● The commands for handling legacy packets are still available as opsiinstv2
and makeproductfilev2

● command line tool 'opsi-admin' for script driven opsi configuration

● opsi4ucs: opsi for the Univention Corporate Server (UCS)

● Integration of opsi data storage to the UCS-LDAP

● Integration of opsi configuration to the 'Univention Admin Interface'

● There is a special manual: 'opsi4ucs'

14.1.4. Vocabulary

For opsi V3 some new definitions are used and some have changed since opsi V2.

Here are some of the important definitions:

action request Action which will be executed next. something like: 'setup',

'deinstall' or 'update'. -> installation status

backend opsi V3 may use different types of data storage (backends) like File

or LDAP. Which and how these backends are used is configured by

the -> backend manager.

156

14. History

backend manager Program / configuration file to configure the different backends

clientId unique identifier for a client using the 'full qualified hostname'

e.g. dpvm02.uib.local

hostId unique identifier for a computer using the 'full qualified hostname'

e.g. dpvm02.uib.local

installation status actual installation status of a product on a specific client,

typically something like: 'installed' or 'not installed'. -> action request

LastSeen Time stamp of the last client call to the opsi web service

localboot product An opsi packet which will be installed by the opsi-preloginloader

netboot product An opsi packet which will be handled by starting a boot image

opsi-admin opsi V3 command line interface for opsi-Configuration

opsiHostKey see pckey

opsi-Configed opsi V3 graphical configuration tool as Java Application and Applet

opsiconfd Daemon that provides the opsi configuration API as JSON based

web service

product properties additional client specific product configuration

productId unique identifier for an opsi product. Special characters (beside '-')

are not allowed. Example: acroread

product name Full name of the software product. Example: 'Adobe Acrobat

Reader'

server product An opsi product which installs something on the server which is no

client software

157

14. History

14.1.5. Migration to opsi V3

The migration of the opsi environment from opsi V2 to opsi V3 is described in the
opsi depot server installation handbook.

14.2. Difference between opsi Version 3.1 and Version 3.0

14.2.1. Overview

● Integration of boot image based products into the standard data management

● Boot image products like OS-installation, hardware inventory, create
images or restore images are now integrated in the normal data
configuration like other products and can be administrated the same way

● The opsi-reinstmgr is replaced by the opsipxeconfd, which gets a direct
access to the opsi configuration by the opsi-Python-Library.

● Extensions of the opsi-configed

● Information about installed software and package versions of a product
are displayed and evaluated

● Basic opsi configurations (Generalconfig) are now editable

● New scripts for the initial rollout of the opsi-preloginloader

● opsi-deploy-preloginloader
Starts the installation of the opsi-preloginloader from the server side. The
admin password of the client and an open C$- and admin file share are
required

● setup_service.cmd
If the requirements for the script opsi-deploy-preloginloader aren't met, the
administrator can start a script on the client side to generate the client
entry per opsi-service and install the preloginloader on the client side (by
providing username/password of an opsi-admin in the script)

● Simplified driver integration based on the PCI Vendor- and Device-IDs

158

14. History

● A new script passes just the required additional drivers to the Windows
installation process, so it doesn't need to scan all the available drivers
anymore

● Improvements of the opsi-preloginloader / opsi-wInst

● The opsi-preloginloader now is more stable in situations with a broken
name resolution

● Bugfix regarding the support of English systems

● opsi-wInst function for identification of the system language at run time for
supporting multilingual packages.

● opsi-wInst support request of the opsi-Service from within wInst-scripts

● Data conversion between different backends, e.g. from file-backend to the LDAP-
backend

● Some more adaptations on the linux standard base with the new file3.1-backend

14.2.2. What you should read

Opsi V3.1 brings along some news you should be familiar with. As an introduction
please first read this chapter.

And further on refer to:

● Chapter 4.1.3 Subsequent installation of the opsi-preloginloader

● Description of the backend you are using

● Description of the opsi-configed

● Chapter Driver integration in a Windows installation

● wInst-hand book

159

14. History

14.2.3. Backend

opsi V3.1 supports the following backends:

● File
Data based backend. This is backward compatible with opsi V2.x and being
located in /opt/pcbin/pcptch it is not conform to the 'Linux Standard Base'.

● File3.1
Data based backend. This is incompatible to opsi2.x and being located in /var/lib/
opsi it is conform to the 'Linux Standard Base'.
The essentially differences to the 'file'-backend are:

● Aggregation of the product administration of 'normal' products and
bootimage based (localboot- and netboot products) in one data file per
client

● Separation of current status and requested action for each software
product

● LDAP
Standard Open-LDAP opsi-Backend

● Univention-LDAP
Backend of the opsi special edition opsi4ucs

The default backend for a new opsi installation is: File3.1

14.2.4. Migration to opsi V3.1

The migration of the opsi environment from opsi V3.0 to opsi V3.1 is described in the
opsi depot server installation handbook.

14.3. Difference between opsi version 3.2 and version 3.1

14.3.1. Overview

● Upgraded hardware inventory

160

14. History

● The opsi-product 'hwaudit' detects hardware information per WMI and
reports it to the opsi depot server

● opsi-configed displays the current hardware inventory sorted by device
classes

● Selection of clients by certain hardware criteria like e.g. the size of main
storage

● Provides server-sided extensions to transfer hardware inventory data via
the web service and save it to the backend data base

● Ability of the opsi-wInst to execute python scripts out of a wInst-section

● Upgraded software inventory

● The opsi-product 'swaudit' collects software information from the client
registry and reports it to the opsi depot server

● opsi-configed displays the current software inventory

● Provides serversided extensions to transfer the software inventory data
via the web service and save it to the backend data base

● Accelerated performance of the unattended installation of WinXP/2k (without
using DOS anymore)

● Upgraded process to save and restore NTFS-images

● Other netboot products:

● wipedisk: Fast or very secure data deletion from the hard disk

● memtest: Test the client memory

● Several bugfixes

● Updated documentation and installation media:

● opsi V3.2 installation handbook

161

14. History

● opsi V3.2 handbook

● opsi-wInst handbook

● opsi-wInst quick reference

● Virtual opsi V3.2 opsi depot server for Vmware

● Installation CD for opsi V3.2 opsi depot server

14.3.2. What you should read

Opsi V3.2 brings along some news you should be familiar with. Please first read

this chapter and then refer for further information:

● Chapter: 'swaudit' and 'hwaudit': Products for the hard- and software inventory

● Chapter about netboot products like ntfs-image, wipedisk and memtest

● The opsi integration handbook: opsi V3.2 has been added to this handbook

● Updated wInst-handbook

14.3.3. Migration to opsi V3.2

The migration of the opsi environment from opsi V3.x to opsi 3V.2 is described in the
opsi depot server installation handbook.

162

15. Glossary

15. Glossary

action request Since opsi V3 the installation status and the next scheduled action

(action request) are handled as separate. Typical action requests

are 'setup', 'deinstall' and 'update'. -> installation status.

backend opsi V3 may use different types of data storage (backends) like

'File' or 'LDAP'. These backends are managed by the

-> backend manager.

backend manager Program / configuration file for handling the actual data storage

(backend).

bootp Bootstrap protocol, first used to boot terminals in Unix

environments. Allows a client to request configuration data (i.e.

network address), often via -> Bootprom from a server.

bootprom Read only memory installed on a -> NIC or main board (PROM:

Programmable Read Only Memory). The BIOS of a PC can execute

the code stored in the bootprom at boot time. The purpose is to

load configuration data from a server on the network. The protocol

for this usually is ->bootp or ->DHCP.

clientId Unique client name as the 'full qualified hostname', which is the

client's IP-name including the domain (e.g. 'dpvm02.uib.local').

DHCP Dynamic Host Configuration Protocol: an extension of the ->bootp-

protocol allowing dynamic IP address assignment.

ftpd File Transfer Protocol-Daemon: Daemon for both ends of the ftp-

protocol. Allows remote logins and file transfer from and to remote

hosts.

telnetd (Telnet-Daemon) provides (insecure) terminal connections

from remote machines.

163

15. Glossary

GINA Graphical Identification and Authentication

is a Microsoft Windows program handling the user login. The

default is 'msgina.dll'. For modifying the login process, additional

GINAs can extend the msgina. The opsi-loginblocker (for preventing

the user login during software installation) is a GINA extension

based on the source of 'pgina.dll' (http://pgina.xpasystems.com).

GNU The recursive abbreviation GNU stands for "GNU's not Unix".

The GNU-project was initiated in 1983 by Richard Stallman, founder

of the Free Software Foundation, to develop a free Unix like OS.

This project is still in progress and originated a lot of GNU-tools,

that allowed the development of LINUX. Therefore Linux is often

referred to as GNU/Linux.

GUI Graphical User Interface.

hostId Unique ID of a computer by using the 'full qualified hostname',

which is the 'IP-name' including the domain (e.g. 'dpvm02.uib.local')

inetd Internet Daemon: is the master service of some other daemons,

which are for instance bootpd, ftpd, tftpd and telnetd. These

daemons are started on request by the inetd according to the inetd

configuration file '/etc/inetd.conf'.

Installation status Since opsi V3 the installation status and the next scheduled action

(action request) are handled as separate. The installation status is

usually 'installed' or 'not installed'. -> action request

IP address IP (Internet Protocol) address is an unique address within the

internet or subnet.

The IP address is a 32-bit number composed of the network

address and second the machine-address within the network.

Usually the 32-bit number is written as four decimal numbers

(0..255) separated by a dot (e.g. 194.31.284.12).

164

15. Glossary

Dependant on the network size the network is classified as class A,

B or C. In class A networks (for very large networks) the first

number (1..126) addresses the network itself and the three

remaining segments represent the machine's address.

Class B networks use the first two numbers to address the network

(the first number must be 128..191) and the last two numbers to

specify the machine.

In a class C network three numbers address the network and just

the last segment is used to specify the machine.

All three classes have an address range (i.e. 192.168. for private

networks) which is not routed to the internet. This class structure is

somehow outdated since classless inter domain routing became

practice to make better use of the limited resources of IPv4

addresses.

JSON JSON short for JavaScript Object Notation is a compact data

exchange format. The data are easy to read for people and for

machines. Source: http://de.wikipedia.org/wiki/JSON and

www.json.org

LastSeen Time stamp of the last client connect to the opsi service.

localboot product An opsi packet which is installable by the opsi-preloginloader.

MAC address The 'Media Access Control address' is an unique identifier attached

to the network adapter and is transferred with every data packet.

With this address the computer (respectively its network card) can

be identified worldwide and can be mapped to an →IP-number. The

MAC address is composed from 6 hexadecimal numbers (0..FF)

separated by colon (e.g. 00-08-74-4C-7F-1D). The first 3 numbers

identify the manufacturer of the network adapter.

netboot product An opsi packet which is installable by a bootimage.

165

15. Glossary

NIC Network Interface Controller – hardware to connect the network

opsi-admin opsi V3 command line interface for opsi configuration

opsi-Configed opsi V3 configuration tool (Java application and applet)

opsi-preLoginLoader - opsi service on Windows clients to install software packets.

opsiconfd opsi configuration deamon - provides the opsi configuration API as

a JSON based web service.

opsiHostKey see pckey

pckey A string assigned to the client during the (preloginloader-)

installation, which is also saved on the server. The pckey is used for

client authentication and not accessible for standard users.

→opsiHostKey

PDC Primary Domain Controller: primary authentication server of a

Microsoft network.

pgina -> GINA

preloginloader -> opsi-preLoginLoader

product properties A product can be configured at installation time by evaluating the

product properties, which are client specific settings. These could

for instance indicate, whether some additional modules should be

installed on that client. Or the property could specify an attribute to

patch the installation in some way or another.

product ID Unique name of an opsi-product (A..Z, numbers and hyphen, no

spaces allowed). In opsi V2 this is often used as a synonym for ->

product name, which has a different meaning with opsi V3.

Example for a product Id: acroread

166

15. Glossary

product name In opsi V3 this is the full name of a product (allowing blanks).

Example for a product name: 'Adobe Acrobat Reader'.

PXE Preboot eXecution Environment: common standard for bootproms.

Usually ->DHCP (not ->bootp) is used with PXE bootproms.

SAMBA Open source software to provide services on Unix/Linux servers for

the ->SMB protocol (used by Microsoft clients).

Server product An opsi product which is executing installations on the server only

(containing no installable client software).

SMB Server Message Block: Protocol by Microsoft to support network

shares and authentication. Recently also named CIFS (Common

Internet File System).

Subnets In case of large local networks it often makes sense to divide it into

subnets. To do this, an arbitrary sized part of the machine address

within the IP is defined to be the subnet. In this case the IP address

has three parts: network, subnet and machine. The subnet mask

determines which part of the IP remains machine specific by setting

these bits in the subnet mask to zero and the bits for the network

and subnetwork to one.

TCP/IP Transmission Control Protocol / Internet Protocol: is originated from

the Unix world and has become the base protocol for all kinds of

internet communication. All the services for web, email, file transfer

etc. are based on TCP/IP.

tftpd tftp (Trivial File Transfer Protocol) is a file transfer protocol (based

on -> TCP/IP) without interactive login. The file transfer is managed

by the tftpd (tftp daemon). For security reasons tftpd has limited

access to the file system and may only transfer files from a

dedicated directory (usually '/tftboot'). The files to be transferred

167

15. Glossary

must be fully accessible for all users. The opsi clients are using tftp

to fetch boot menus and bootimages from the server.

168

16. Table of Figures

16. Table of Figures

Table of Figures
opsi-Configed: login mask 18

opsi-Configed: client selection mask 19

opsi-Configed: mask: group setting 20

creating a client 21

change the depot of a client

22

opsi-Configed: product configuration mask 23

opsi-Configed: mask to start the bootimage 25

opsi-Configed: Hardware informations for the selected client 25

opsi-Configed: Software information for the selected client 26

opsi-Configed: network and additional configuration 27

Automatic software distribution on a client. An opsi server provides configuration information and
installable software packets. 39

Choose the product type: localboot 68

Input of the product information 69

Input of the wInst script names for different actions 70

Create product dependency: No/Yes 71

Data input to create a product dependency 71

A(nother) product property to create? 73

Description of the product properties 73

Default value of the product property 74

Step 1 during PXE-Boot 79

Step 2 PXE-Boot 81

PXE-Boot loaded with bootimage preparing hard disk for operating system installation 83

After preparation of the bootimage the computer starts from local disk and installs the operating system
and the opsi-PreLoginLoader 84

Webmin-input mask for groups 102

Startup screen of the tool Webmin 102

Komponenten und Kommunikation einer Multidepotinstallation 106

Flowchart for a 'regular' PXE-boot without re-installation, but with the start of the opsi preLoginLoader
125

Legacy opsi V2 direct data access 153

169

16. Table of Figures

opsi V3 using the web service for data access 154

use of different storage systems (LDAP) by the daemon 154

170

17. Additions and Changes

17. Additions and Changes

Additions and changes in this hand book.

17.1. opsi 2.4 to opsi 2.5

● Usage of https in the web configuration editor

● Chapter on driver integration for the automatic software OS installation

● Chapter for subsequent installation of the preloginloader

● References to opsi-wiki

● References to the opsi bootimage handbook

● List of the opsi log files

17.2. Additions opsi 2.5 (9/25/06)

● Option 'askBeforeInst' in 'global.sysconf' has been moved from the [general]
section to the product section

● Description of the switch 'textcolor' (wInst customizing)

17.3. Additions opsi 2.5 / opsi 3.0 (12/8/06)

● Registry entry 'button_stopnetworking' is in 'opsi.org/pcptch'

17.4. Additions opsi 3.0 (1.2.07)

Chapter: Differences between opsi Version 3 to Version 2

Chapter: Programs in /opt/bin

Extension: Configuration files in /etc/opsi

New entries in the registry

Extensions: Configuration files for the software distribution: <pcname>.ini

171

17. Additions and Changes

Chapter: *.sysconf-files

Chapter: files in /etc/init.d

Chapter: /etc/group

Chapter: Tool: opsi-admin

Chapter: Tool: opsi V3 opsi-Configed

Chapter: Tool: opsi V3 opsi-Webconfigedit

Chapter: Tool: opsi V3 opsi-admin

Chapter: Log files in /var/log and /var/log/opsi

Additions to the glossary

Extension: Subsequent installation of the opsi-PreLoginLoader: Every client
needs an entry in /etc/opsi/pckeys

17.5. Additions opsi 3.0

12.4.07: LDAP chapter

17.6. Additions opsi 3.1 (15.6.07)

Chapter differences 3.1

Chapter File31 Backend

Deleted: Tool reinstmanager

opsi-admin task setPcpatchPassword

opsi-admin client bootimage activate

Actualized: description of the opsi-configed

Actualized: chapter on the preloginloader rollout

172

17. Additions and Changes

Actualized: chapter on driver integration

opsi-admin: new methods:
method authenticated
method checkForErrors
method deleteProductProperties productId *objectId
method deleteProductProperty productId property *objectId
method deleteServer serverId
method getHost_hash hostId
method getNetBootProductIds_list
method getPossibleProductActionRequests_list
method setPXEBootConfiguration hostId *args
method setPcpatchPassword hostId password
method unsetPXEBootConfiguration hostId

17.7. Additions opsi 3.2 (21.11.07)

Actualized: the chapter 'Simplified driver integration with symlinks' for driver
integration (download_driver_pack.py and preferred)

173

	1. Introduction
	1.1. Who should read this manual?
	1.2. Notations

	2. Overview of opsi
	2.1. Experience
	2.2. opsi features
	2.3. What's new at opsi 3.3
	2.4. What you should read in case of a upgrade to opsi 3.3

	3. opsi configuration and tools
	3.1. Overview
	3.2. Tool: opsi V3 opsi-Configed
	3.2.1. Requirements and operation
	3.2.2. Login
	3.2.3. Depot selection
	3.2.4. Single client selection and batch selection
	3.2.5. Client processing / WakeOnLan / Create a Client / Move a Client
	3.2.6. Product configuration
	3.2.7. Netboot products
	3.2.8. Hardware information
	3.2.9. Software inventory
	3.2.10. Server configuration: network and additional settings

	3.3. Tool: opsi V3 opsi-Webconfiged
	3.4. Tool: opsi-package-manager: (de-)installs opsi-packages
	3.5. Tool: opsi V3 opsi-admin
	3.5.1. Overview
	3.5.2. Typical use cases
	3.5.2.1. Delete product
	3.5.2.2. Set a product to setup for all clients which have this product installed
	3.5.2.3. Client delete
	3.5.2.4. Client create
	3.5.2.5. Client boot image activate
	3.5.2.6. Attach client description
	3.5.2.7. Set pcpatch password

	3.5.3. List of methods

	4. Localboot products: automatic software distribution with opsi
	4.1. opsi-preloginloader
	4.1.1. Overview
	4.1.2. Integration of the software installation with the opsi preLoginLoader
	4.1.3. Subsequent installation of the opsi-preloginloaders
	4.1.3.1. Usage of the opsi-deploy-preloginloader
	4.1.3.2. Usage of service_setup.cmd

	4.1.4. Blocking the user login with the opsi-Loginblocker

	4.2. opsi standard products
	4.2.1. opsi-preloginloader
	4.2.2. opsi-wInst
	4.2.3. Javavm: Java Runtime Environment
	4.2.4. opsi-admin
	4.2.5. Swaudit and hwaudit: Products for hardware and software inventories

	4.3. Integration of new software packets into the opsi software deployment.
	4.3.1. Create an opsi-wInst script
	4.3.1.1. Overview
	4.3.1.2. Integration with unattended or silent setup
	4.3.1.2.1. Search unattended.sourceforge.net and others
	4.3.1.2.2. Search the software producers site
	4.3.1.2.3. Search the setup tool manufacturers site
	4.3.1.2.4. Installation with a logged on user

	4.3.1.3. Work with MSI-packages
	4.3.1.4. Customizing after a silent/unattended installation
	4.3.1.5. Integration with automated answers for the setup program
	4.3.1.6. Analyze and repackage
	4.3.1.6.1. Hints for execution of WinINSTALL LE
	4.3.1.6.2. Orca

	4.3.1.7. Internal structure of an integrated product
	4.3.1.7.1. Tasks of the opsi installer wInst (for Windows)
	4.3.1.7.2. General hints for writing a Winst-script
	4.3.1.7.2.1. What if the installation needs a reboot
	4.3.1.7.2.2. Files copy
	4.3.1.7.2.3. Start menu entries
	4.3.1.7.2.4. System software dependencies
	4.3.1.7.2.5. Options in the wInst script

	4.3.1.8. How to deinstall products
	4.3.1.8.1. Using an uninstall routine
	4.3.1.8.2. Useful wInst commands for uninstall

	4.3.2. Creating an opsi package
	4.3.2.1. Create, pack and unpack a new product
	4.3.2.2. Create client specific opsi packages

	5. Netboot products: Automated OS installation and more
	5.1. Unattended automated OS installation
	5.1.1. Overview
	5.1.2. Preconditions
	5.1.3. PC-client boots via the network
	5.1.3.1. Loading pxelinux

	5.1.4. Boot from CD
	5.1.5. The linux bootimage prepares for reinstallation
	5.1.6. Installation of OS and opsi-preLoginLoader
	5.1.7. How the patcha program works
	5.1.8. Integrating additional drivers in the unattended Windows installation
	5.1.8.1. Simplified driver integration with symlinks
	5.1.8.2. Driver integration classic

	5.2. Ntfs image (write and restore)
	5.3. Memtest
	5.4. Wipedisk

	6. opsi-Module: depot server
	6.1. Overview
	6.2. Installation and initial operation
	6.3. Access to the graphic user interface of the depot server via VNC
	6.4. Shares for software packets and configuration files
	6.4.1. Samba Configuration
	6.4.2. Required administrative user accounts and groups
	6.4.2.1. User opsiconfd
	6.4.2.2. User pcpatch
	6.4.2.3. Group pcpatch
	6.4.2.4. Group opsiadmin

	6.4.3. Depot share with software packets (install)
	6.4.4. Config share with configuration and logging (pcpatch)
	6.4.5. Utils share: Utilities (utils)

	6.5. Administration of PCs via DHCP
	6.5.1. What is DHCP?
	6.5.2. Dhcpd.conf
	6.5.3. Tools: DHCP administration with Webmin

	6.6. opsi V3: opsi configuration API, opsiconfd and backend manager

	7. opsi-server with multiple depots
	7.1. Support
	7.2. Concept
	7.3. Creating a (slave) depot-servers
	7.4. packetmangment with the opsi-package-manager
	7.5. configuration files

	8. DHCP and name resolving (DNS)
	9. opsi data storage (backend)
	9.1. File backend
	9.1.1. File3.1-Backend (opsi 3.1)
	9.1.2. File-Backend (opsi 3.0)

	9.2. LDAP backend
	9.2.1. Integrating the LDAP-backend
	9.2.2. Configuring the LDAP-backend
	9.2.3. Assign the LDAP-backend to methods

	9.3. MySQL-backend for inventory data
	9.3.1. overview and datastructure
	9.3.2. Initializing the MySQL-Backend

	9.4. Conversion between different backends
	9.5. Boot files
	9.6. Securing the shares with encrypted passwords

	10. Adapting the opsi preloginLoader to your Corporate Identity (CI)
	11. Overview: A PC boots from the network
	12. Important files on the depot servers
	12.1. Configuration files
	12.1.1. Configuration files in /etc
	12.1.1.1. /etc/hosts
	12.1.1.2. /etc/group
	12.1.1.3. /etc/opsi/pckeys
	12.1.1.4. /etc/opsi/passwd
	12.1.1.5. /etc/opsi/backendManager.conf
	12.1.1.6. /etc/opsi/backendManager.conf/*
	12.1.1.7. /etc/opsi/hwaudit/*
	12.1.1.8. /etc/opsi/opsiconfd.conf
	12.1.1.9. /etc/opsi/opsiconfd.pem
	12.1.1.10. /etc/opsi/opsipxeconfd.conf
	12.1.1.11. /etc/opsi/version
	12.1.1.12. /etc/init.d/

	12.2. Boot files
	12.2.1. Boot files in /tftpboot/linux
	12.2.1.1. pxelinux.0
	12.2.1.2. install und miniroot.gz

	12.2.2. Boot files in /tftpboot/linux/pxelinux.cfg
	12.2.2.1. 01-<MAC address> or <IP-NUMBER-in-Hex>
	12.2.2.2. default
	12.2.2.3. install

	12.3. Files of the File-Backend
	12.3.1. File3.1-Backend
	12.3.1.1. Overview
	12.3.1.2. Configuration files in '/var/lib/opsi/config'
	12.3.1.2.1. clientgroups.ini
	12.3.1.2.2. global.ini

	12.3.1.3. Configuration files in /var/lib/opsi/config/clients
	12.3.1.3.1. <pcname>.ini
	12.3.1.3.1.1. [generalconfig]
	12.3.1.3.1.2. [networkconfig]
	12.3.1.3.1.3. [localboot_product_states]
	12.3.1.3.1.4. [netboot_product_states]
	12.3.1.3.1.5. [<product>-state]
	12.3.1.3.1.6. [<product>-install]
	12.3.1.3.1.7. [info]

	12.3.1.4. Configuration files in /var/lib/opsi/config/templates
	12.3.1.5. Configuration files in /var/lib/opsi/config/depots/<depotid>
	12.3.1.6. Product control files in /var/lib/opsi/config/depots/<depotid>/products

	12.3.2. File-Backend (opsi 2.x/3.0)
	12.3.2.1. Configuration files in /tftpboot/opsi
	12.3.2.1.1. *.sysconf-files
	12.3.2.1.2. global.sysconf
	12.3.2.1.3. domain.sysconf
	12.3.2.1.4. <pcname>.sysconf

	12.3.2.2. Configuration files in the opsi config and utils file shares
	12.3.2.2.1. Function and configuration of <pcname>.ini files
	12.3.2.2.2. Software-product-information file: produkte.txt
	12.3.2.2.3. Software-product-path and script-information: pathnams.ini

	12.3.2.3. Help files produkte.txt and pathnams.ini

	12.4. Files of the LDAP-backend
	12.5. Opsi programs and libraries
	12.5.1. Python library
	12.5.2. Programs in /usr/sbin
	12.5.3. Programs in /usr/bin

	12.6. opsi-log files
	12.6.1. /var/log
	12.6.2. /var/log/opsi/opsiconfd
	12.6.3. /var/log/opsi/bootimage
	12.6.4. /var/log/opsi/opsipxeconfd
	12.6.5. Software installation (c:\tmp)

	13. Registry entries
	13.1. Registry entries for the opsi-preLoginLoader
	13.1.1. opsi.org/general
	13.1.2. opsi.org/shareinfo
	13.1.3. opsi.org/preloginloader

	13.2. Registry-entries for opsi-wInst
	13.2.1. Controlling the logging via syslog protocol

	14. History
	14.1. Differences of opsi version 3 to version 2
	14.1.1. Overview (What you should read)
	14.1.2. Conceptual
	14.1.3. Improvement of the handling
	14.1.4. Vocabulary
	14.1.5. Migration to opsi V3

	14.2. Difference between opsi Version 3.1 and Version 3.0
	14.2.1. Overview
	14.2.2. What you should read
	14.2.3. Backend
	14.2.4. Migration to opsi V3.1

	14.3. Difference between opsi version 3.2 and version 3.1
	14.3.1. Overview
	14.3.2. What you should read
	14.3.3. Migration to opsi V3.2

	15. Glossary
	16. Table of Figures
	17. Additions and Changes
	17.1. opsi 2.4 to opsi 2.5
	17.2. Additions opsi 2.5 (9/25/06)
	17.3. Additions opsi 2.5 / opsi 3.0 (12/8/06)
	17.4. Additions opsi 3.0 (1.2.07)
	17.5. Additions opsi 3.0
	17.6. Additions opsi 3.1 (15.6.07)
	17.7. Additions opsi 3.2 (21.11.07)

